Peter Hase


2024

pdf bib
The Unreasonable Effectiveness of Easy Training Data for Hard Tasks
Peter Hase | Mohit Bansal | Peter Clark | Sarah Wiegreffe
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

How can we train models to perform well on hard test data when hard training data is by definition difficult to label correctly? This question has been termed the scalable oversight problem and has drawn increasing attention as language models have continually improved. In this paper, we present the surprising conclusion that current pretrained language models often generalize relatively well from easy to hard data, even performing as well as oracle models finetuned on hard data. We demonstrate this kind of easy-to-hard generalization using simple finetuning methods like in-context learning, linear classifier heads, and QLoRA for seven different measures of datapoint hardness, including six empirically diverse human hardness measures (like grade level) and one model-based measure (loss-based). Furthermore, we show that even if one cares most about model performance on hard data, it can be better to collect easy data rather than hard data for finetuning, since hard data is generally noisier and costlier to collect. Our experiments use open models up to 70b in size and four publicly available question-answering datasets with questions ranging in difficulty from 3rd grade science questions to college level STEM questions and general-knowledge trivia. We conclude that easy-to-hard generalization in LMs is surprisingly strong for the tasks studied.

pdf bib
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)
Sha Li | Manling Li | Michael JQ Zhang | Eunsol Choi | Mor Geva | Peter Hase | Heng Ji
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)

pdf bib
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)
Chen Zhao | Marius Mosbach | Pepa Atanasova | Seraphina Goldfarb-Tarrent | Peter Hase | Arian Hosseini | Maha Elbayad | Sandro Pezzelle | Maximilian Mozes
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)

2023

pdf bib
Methods for Measuring, Updating, and Visualizing Factual Beliefs in Language Models
Peter Hase | Mona Diab | Asli Celikyilmaz | Xian Li | Zornitsa Kozareva | Veselin Stoyanov | Mohit Bansal | Srinivasan Iyer
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Language models can memorize a considerable amount of factual information during pretraining that can be elicited through prompting or finetuning models on tasks like question answering. In this paper, we discuss approaches to measuring model factual beliefs, updating incorrect factual beliefs in models, and visualizing graphical relationships between factual beliefs. Our main contributions include: (1) new metrics for evaluating belief-updating methods focusing on the logical consistency of beliefs, (2) a training objective for Sequential, Local, and Generalizing updates (SLAG) that improves the performance of existing hypernetwork approaches, and (3) the introduction of the belief graph, a new form of visualization for language models that shows relationships between stored model beliefs. Our experiments suggest that models show only limited consistency between factual beliefs, but update methods can both fix incorrect model beliefs and greatly improve their consistency. Although off-the-shelf optimizers are surprisingly strong belief-updating baselines, our learned optimizers can outperform them in more difficult settings than have been considered in past work.

pdf bib
GrIPS: Gradient-free, Edit-based Instruction Search for Prompting Large Language Models
Archiki Prasad | Peter Hase | Xiang Zhou | Mohit Bansal
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Providing natural language instructions in prompts is a useful new paradigm for improving task performance of large language models in a zero-shot setting. Recent work has aimed to improve such prompts via manual rewriting or gradient-based tuning. However, manual rewriting is time-consuming and requires subjective interpretation, while gradient-based tuning can be extremely computationally demanding for large models and may not be feasible for API-based models. In this work, we introduce Gradient-free Instructional Prompt Search (GrIPS), a gradient-free, edit-based search approach for improving task instructions for large language models. GrIPS takes in instructions designed for humans and automatically returns an improved, edited prompt, while allowing for API-based tuning. With InstructGPT models, GrIPS improves the average task performance by up to 4.30 percentage points on eight classification tasks from the Natural Instructions dataset (with similar improvements for OPT, BLOOM, and FLAN-T5). We see improvements for both instruction-only prompts and instruction + k-shot examples prompts. Notably, GrIPS outperforms manual rewriting and purely example-based prompts while controlling for the available compute and data budget. Further, performance of GrIPS is comparable to select gradient-based tuning approaches. Qualitatively, we show our edits can simplify instructions and at times make them incoherent but nonetheless improve accuracy.

2022

pdf bib
Are Hard Examples also Harder to Explain? A Study with Human and Model-Generated Explanations
Swarnadeep Saha | Peter Hase | Nazneen Rajani | Mohit Bansal
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent work on explainable NLP has shown that few-shot prompting can enable large pre-trained language models (LLMs) to generate grammatical and factual natural language explanations for data labels. In this work, we study the connection between explainability and sample hardness by investigating the following research question – “Are LLMs and humans equally good at explaining data labels for both easy and hard samples?” We answer this question by first collecting human-written explanations in the form of generalizable commonsense rules on the task of Winograd Schema Challenge (Winogrande dataset). We compare these explanations with those generated by GPT-3 while varying the hardness of the test samples as well as the in-context samples. We observe that (1) GPT-3 explanations are as grammatical as human explanations regardless of the hardness of the test samples, (2) for easy examples, GPT-3 generates highly supportive explanations but human explanations are more generalizable, and (3) for hard examples, human explanations are significantly better than GPT-3 explanations both in terms of label-supportiveness and generalizability judgements. We also find that hardness of the in-context examples impacts the quality of GPT-3 explanations. Finally, we show that the supportiveness and generalizability aspects of human explanations are also impacted by sample hardness, although by a much smaller margin than models.

pdf bib
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Peter Hase | Mohit Bansal
Proceedings of the First Workshop on Learning with Natural Language Supervision

Many methods now exist for conditioning models on task instructions and user-provided explanations for individual data points. These methods show great promise for improving task performance of language models beyond what can be achieved by learning from individual (x,y) pairs. In this paper, we (1) provide a formal framework for characterizing approaches to learning from explanation data, and (2) we propose a synthetic task for studying how models learn from explanation data. In the first direction, we give graphical models for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. In the second direction, we introduce a carefully designed synthetic task with several properties making it useful for studying a model’s ability to learn from explanation data. Each data point in this binary classification task is accompanied by a string that is essentially an answer to the why question: “why does data point x have label y?” We aim to encourage research into this area by identifying key considerations for the modeling problem and providing an empirical testbed for theories of how models can best learn from explanation data.

2021

pdf bib
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo | Nazneen Rajani | Peter Hase | Mohit Bansal | Caiming Xiong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Influence functions approximate the “influences” of training data-points for test predictions and have a wide variety of applications. Despite the popularity, their computational cost does not scale well with model and training data size. We present FastIF, a set of simple modifications to influence functions that significantly improves their run-time. We use k-Nearest Neighbors (kNN) to narrow the search space down to a subset of good candidate data points, identify the configurations that best balance the speed-quality trade-off in estimating the inverse Hessian-vector product, and introduce a fast parallel variant. Our proposed method achieves about 80X speedup while being highly correlated with the original influence values. With the availability of the fast influence functions, we demonstrate their usefulness in four applications. First, we examine whether influential data-points can “explain” test time behavior using the framework of simulatability. Second, we visualize the influence interactions between training and test data-points. Third, we show that we can correct model errors by additional fine-tuning on certain influential data-points, improving the accuracy of a trained MultiNLI model by 2.5% on the HANS dataset. Finally, we experiment with a similar setup but fine-tuning on datapoints not seen during training, improving the model accuracy by 2.8% and 1.7% on HANS and ANLI datasets respectively. Overall, our fast influence functions can be efficiently applied to large models and datasets, and our experiments demonstrate the potential of influence functions in model interpretation and correcting model errors.

2020

pdf bib
Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?
Peter Hase | Mohit Bansal
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Algorithmic approaches to interpreting machine learning models have proliferated in recent years. We carry out human subject tests that are the first of their kind to isolate the effect of algorithmic explanations on a key aspect of model interpretability, simulatability, while avoiding important confounding experimental factors. A model is simulatable when a person can predict its behavior on new inputs. Through two kinds of simulation tests involving text and tabular data, we evaluate five explanations methods: (1) LIME, (2) Anchor, (3) Decision Boundary, (4) a Prototype model, and (5) a Composite approach that combines explanations from each method. Clear evidence of method effectiveness is found in very few cases: LIME improves simulatability in tabular classification, and our Prototype method is effective in counterfactual simulation tests. We also collect subjective ratings of explanations, but we do not find that ratings are predictive of how helpful explanations are. Our results provide the first reliable and comprehensive estimates of how explanations influence simulatability across a variety of explanation methods and data domains. We show that (1) we need to be careful about the metrics we use to evaluate explanation methods, and (2) there is significant room for improvement in current methods.

pdf bib
Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?
Peter Hase | Shiyue Zhang | Harry Xie | Mohit Bansal
Findings of the Association for Computational Linguistics: EMNLP 2020

Data collection for natural language (NL) understanding tasks has increasingly included human explanations alongside data points, allowing past works to introduce models that both perform a task and generate NL explanations for their outputs. Yet to date, model-generated explanations have been evaluated on the basis of surface-level similarities to human explanations, both through automatic metrics like BLEU and human evaluations. We argue that these evaluations are insufficient, since they fail to indicate whether explanations support actual model behavior (faithfulness), rather than simply match what a human would say (plausibility). In this work, we address the problem of evaluating explanations from the the model simulatability perspective. Our contributions are as follows: (1) We introduce a leakage-adjusted simulatability (LAS) metric for evaluating NL explanations, which measures how well explanations help an observer predict a model’s output, while controlling for how explanations can directly leak the output. We use a model as a proxy for a human observer, and validate this choice with two human subject experiments. (2) Using the CoS-E and e-SNLI datasets, we evaluate two existing generative graphical models and two new approaches; one rationalizing method we introduce achieves roughly human-level LAS scores. (3) Lastly, we frame explanation generation as a multi-agent game and optimize explanations for simulatability while penalizing label leakage, which can improve LAS scores.