Peter Staar
2024
Statements: Universal Information Extraction from Tables with Large Language Models for ESG KPIs
Lokesh Mishra
|
Sohayl Dhibi
|
Yusik Kim
|
Cesar Berrospi Ramis
|
Shubham Gupta
|
Michele Dolfi
|
Peter Staar
Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)
Environment, Social, and Governance (ESG) KPIs assess an organization’s performance on issues such as climate change, greenhouse gas emissions, water consumption, waste management, human rights, diversity, and policies. ESG reports convey this valuable quantitative information through tables. Unfortunately, extracting this information is difficult due to high variability in the table structure as well as content. We propose Statements, a novel domain agnostic data structure for extracting quantitative facts and related information. We propose translating tables to statements as a new supervised deep-learning universal information extraction task. We introduce SemTabNet - a dataset of over 100K annotated tables. Investigating a family of T5-based Statement Extraction Models, our best model generates statements which are 82% similar to the ground-truth (compared to baseline of 21%). We demonstrate the advantages of statements by applying our model to over 2700 tables from ESG reports. The homogeneous nature of statements permits exploratory data analysis on expansive information found in large collections of ESG reports.
2023
pNLP-Mixer: an Efficient all-MLP Architecture for Language
Francesco Fusco
|
Damian Pascual
|
Peter Staar
|
Diego Antognini
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
Large pre-trained language models based on transformer architectureƒhave drastically changed the natural language processing (NLP) landscape. However, deploying those models for on-device applications in constrained devices such as smart watches is completely impractical due to their size and inference cost. As an alternative to transformer-based architectures, recent work on efficient NLP has shown that weight-efficient models can attain competitive performance for simple tasks, such as slot filling and intent classification, with model sizes in the order of the megabyte. This work introduces the pNLP-Mixer architecture, an embedding-free MLP-Mixer model for on-device NLP that achieves high weight-efficiency thanks to a novel projection layer. We evaluate a pNLP-Mixer model of only one megabyte in size on two multi-lingual semantic parsing datasets, MTOP and multiATIS. Our quantized model achieves 99.4% and 97.8% the performance of mBERT on MTOP and multiATIS, while using 170x less parameters. Our model consistently beats the state-of-the-art of tiny models (pQRNN), which is twice as large, by a margin up to 7.8% on MTOP.
2022
Unsupervised Term Extraction for Highly Technical Domains
Francesco Fusco
|
Peter Staar
|
Diego Antognini
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
Term extraction is an information extraction task at the root of knowledge discovery platforms. Developing term extractors that are able to generalize across very diverse and potentially highly technical domains is challenging, as annotations for domains requiring in-depth expertise are scarce and expensive to obtain. In this paper, we describe the term extraction subsystem of a commercial knowledge discovery platform that targets highly technical fields such as pharma, medical, and material science. To be able to generalize across domains, we introduce a fully unsupervised annotator (UA). It extracts terms by combining novel morphological signals from sub-word tokenization with term-to-topic and intra-term similarity metrics, computed using general-domain pre-trained sentence-encoders. The annotator is used to implement a weakly-supervised setup, where transformer-models are fine-tuned (or pre-trained) over the training data generated by running the UA over large unlabeled corpora. Our experiments demonstrate that our setup can improve the predictive performance while decreasing the inference latency on both CPUs and GPUs. Our annotators provide a very competitive baseline for all the cases where annotations are not available.
Search
Fix data
Co-authors
- Diego Antognini 2
- Francesco Fusco 2
- Cesar Berrospi Ramis 1
- Sohayl Dhibi 1
- Michele Dolfi 1
- show all...