Pheng-Ann Heng
2024
LoRAExit: Empowering Dynamic Modulation of LLMs in Resource-limited Settings using Low-rank Adapters
Jiacheng Liu
|
Peng Tang
|
Xiaofeng Hou
|
Chao Li
|
Pheng-Ann Heng
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) have exhibited remarkable performance across various natural language processing tasks. However, deploying LLMs on resource-limited settings remains a challenge. While early-exit techniques offer an effective approach, they often require compromised training methods that result in sub-optimal performance. On the other hand, multi-model methods achieve improved results but suffer from significant inference latency and memory consumption. In this paper, we propose LoRAExit, a novel dynamic inference architecture that leverages low-rank adaptors for efficient deployment of LLMs. LoRAExit decouples the training of multiple exit interfaces, enabling the separate optimization of each exit, thereby fundamentally addressing the performance issues of early-exit networks. Moreover, we introduce a superior-exit guided distillation method that effectively utilizes models of different sizes, thereby further enhancing the performance of early exits. Experimental results demonstrate that LoRAExit significantly improves LLM performance when deployed on resource-limited settings.
Unveiling the Generalization Power of Fine-Tuned Large Language Models
Haoran Yang
|
Yumeng Zhang
|
Jiaqi Xu
|
Hongyuan Lu
|
Pheng-Ann Heng
|
Wai Lam
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
While Large Language Models (LLMs) have demonstrated exceptional multitasking abilities, fine-tuning these models on downstream, domain-specific datasets is often necessary to yield superior performance on test sets compared to their counterparts without fine-tuning. However, the comprehensive effects of fine-tuning on the LLMs’ generalization ability are not fully understood.This paper delves into the differences between original, unmodified LLMs and their fine-tuned variants. Our primary investigation centers on whether fine-tuning affects the generalization ability intrinsic to LLMs. To elaborate on this, we conduct extensive experiments across five distinct language tasks on various datasets.Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.Intriguingly, we observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model’s generalization ability.Through this systematic investigation, we aim to contribute valuable insights into the evolving landscape of fine-tuning practices for LLMs.