Recent breakthroughs in large language models (LLMs) have centered around a handful of data-rich languages. What does it take to broaden access to breakthroughs beyond first-class citizen languages? Our work introduces Aya, a massively multilingual generative language model that follows instructions in 101 languages of which over 50% are considered as lower-resourced. Aya outperforms mT0 and BLOOMZ on the majority of tasks while covering double the number of languages. We introduce extensive new evaluation suites that broaden the state-of-art for multilingual eval across 99 languages —— including discriminative and generative tasks, human evaluation, and simulated win rates that cover both held-out tasks and in-distribution performance. Furthermore, we conduct detailed investigations on the optimal finetuning mixture composition, data pruning, as well as the toxicity, bias, and safety of our models.
Despite the widespread success of Transformers on NLP tasks, recent works have found that they struggle to model several formal languages when compared to recurrent models. This raises the question of why Transformers perform well in practice and whether they have any properties that enable them to generalize better than recurrent models. In this work, we conduct an extensive empirical study on Boolean functions to demonstrate the following: (i) Random Transformers are relatively more biased towards functions of low sensitivity. (ii) When trained on Boolean functions, both Transformers and LSTMs prioritize learning functions of low sensitivity, with Transformers ultimately converging to functions of lower sensitivity. (iii) On sparse Boolean functions which have low sensitivity, we find that Transformers generalize near perfectly even in the presence of noisy labels whereas LSTMs overfit and achieve poor generalization accuracy. Overall, our results provide strong quantifiable evidence that suggests differences in the inductive biases of Transformers and recurrent models which may help explain Transformer’s effective generalization performance despite relatively limited expressiveness.
This evidence-based position paper critiques current research practices within the language model pre-training literature. Despite rapid recent progress afforded by increasingly better pre-trained language models (PLMs), current PLM research practices often conflate different possible sources of model improvement, without conducting proper ablation studies and principled comparisons between different models under comparable conditions. These practices (i) leave us ill-equipped to understand which pre-training approaches should be used under what circumstances; (ii) impede reproducibility and credit assignment; and (iii) render it difficult to understand: “How exactly does each factor contribute to the progress that we have today?” We provide a case in point by revisiting the success of BERT over its baselines, ELMo and GPT-1, and demonstrate how — under comparable conditions where the baselines are tuned to a similar extent — these baselines (and even-simpler variants thereof) can, in fact, achieve competitive or better performance than BERT. These findings demonstrate how disentangling different factors of model improvements can lead to valuable new insights. We conclude with recommendations for how to encourage and incentivize this line of work, and accelerate progress towards a better and more systematic understanding of what factors drive the progress of our foundation models today.
Vision-and-language (V&L) models pretrained on large-scale multimodal data have demonstrated strong performance on various tasks such as image captioning and visual question answering (VQA). The quality of such models is commonly assessed by measuring their performance on unseen data that typically comes from the same distribution as the training data. However, when evaluated under out-of-distribution (out-of-dataset) settings for VQA, we observe that these models exhibit poor generalization. We comprehensively evaluate two pretrained V&L models under different settings (i.e. classification and open-ended text generation) by conducting cross-dataset evaluations. We find that these models tend to learn to solve the benchmark, rather than learning the high-level skills required by the VQA task. We also find that in most cases generative models are less susceptible to shifts in data distribution compared to discriminative ones, and that multimodal pretraining is generally helpful for OOD generalization. Finally, we revisit assumptions underlying the use of automatic VQA evaluation metrics, and empirically show that their stringent nature repeatedly penalizes models for correct responses.
Compositional generalization is a fundamental trait in humans, allowing us to effortlessly combine known phrases to form novel sentences. Recent works have claimed that standard seq-to-seq models severely lack the ability to compositionally generalize. In this paper, we focus on one-shot primitive generalization as introduced by the popular SCAN benchmark. We demonstrate that modifying the training distribution in simple and intuitive ways enables standard seq-to-seq models to achieve near-perfect generalization performance, thereby showing that their compositional generalization abilities were previously underestimated. We perform detailed empirical analysis of this phenomenon. Our results indicate that the generalization performance of models is highly sensitive to the characteristics of the training data which should be carefully considered while designing such benchmarks in future.
Language models (LMs) trained on large amounts of data have shown impressive performance on many NLP tasks under the zero-shot and few-shot setup. Here we aim to better understand the extent to which such models learn commonsense knowledge — a critical component of many NLP applications. We conduct a systematic and rigorous zero-shot and few-shot commonsense evaluation of large pre-trained LMs, where we: (i) carefully control for the LMs’ ability to exploit potential surface cues and annotation artefacts, and (ii) account for variations in performance that arise from factors that are not related to commonsense knowledge. Our findings highlight the limitations of pre-trained LMs in acquiring commonsense knowledge without task-specific supervision; furthermore, using larger models or few-shot evaluation is insufficient to achieve human-level commonsense performance.
The task of context-dependent text-to-SQL aims to convert multi-turn user utterances to formal SQL queries. This is a challenging task due to both the scarcity of training data from which to learn complex contextual dependencies and to generalize to unseen databases. In this paper we explore augmenting the training datasets using self-play, which leverages contextual information to synthesize new interactions to adapt the model to new databases. We first design a SQL-to-text model conditioned on a sampled goal query, which represents a user’s intent, that then converses with a text-to-SQL semantic parser to generate new interactions. We then filter the synthesized interactions and retrain the models with the augmented data. We find that self-play improves the accuracy of a strong baseline on SParC and CoSQL, two widely used cross-domain text-to-SQL datasets. Our analysis shows that self-play simulates various conversational thematic relations, enhances cross-domain generalization and improves beam-search.
We present a memory-augmented approach to condition an autoregressive language model on a knowledge graph. We represent the graph as a collection of relation triples and retrieve relevant relations for a given context to improve text generation. Experiments on WikiText-103, WMT19, and enwik8 English datasets demonstrate that our approach produces a better language model in terms of perplexity and bits per character. We also show that relational memory improves coherence, is complementary to token-based memory, and enables causal interventions. Our model provides a simple yet effective way to combine an autoregressive language model and a knowledge graph for more coherent and logical generation.
We introduce Transformer Grammars (TGs), a novel class of Transformer language models that combine (i) the expressive power, scalability, and strong performance of Transformers and (ii) recursive syntactic compositions, which here are implemented through a special attention mask and deterministic transformation of the linearized tree. We find that TGs outperform various strong baselines on sentence-level language modeling perplexity, as well as on multiple syntax-sensitive language modeling evaluation metrics. Additionally, we find that the recursive syntactic composition bottleneck which represents each sentence as a single vector harms perplexity on document-level language modeling, providing evidence that a different kind of memory mechanism—one that is independent of composed syntactic representations—plays an important role in current successful models of long text.
We propose a generative framework for simultaneous machine translation. Conventional approaches use a fixed number of source words to translate or learn dynamic policies for the number of source words by reinforcement learning. Here we formulate simultaneous translation as a structural sequence-to-sequence learning problem. A latent variable is introduced to model read or translate actions at every time step, which is then integrated out to consider all the possible translation policies. A re-parameterised Poisson prior is used to regularise the policies which allows the model to explicitly balance translation quality and latency. The experiments demonstrate the effectiveness and robustness of the generative framework, which achieves the best BLEU scores given different average translation latencies on benchmark datasets.
We propose a data augmentation method for neural machine translation. It works by interpreting language models and phrasal alignment causally. Specifically, it creates augmented parallel translation corpora by generating (path-specific) counterfactual aligned phrases. We generate these by sampling new source phrases from a masked language model, then sampling an aligned counterfactual target phrase by noting that a translation language model can be interpreted as a Gumbel-Max Structural Causal Model (Oberst and Sontag, 2019). Compared to previous work, our method takes both context and alignment into account to maintain the symmetry between source and target sequences. Experiments on IWSLT’15 English → Vietnamese, WMT’17 English → German, WMT’18 English → Turkish, and WMT’19 robust English → French show that the method can improve the performance of translation, backtranslation and translation robustness.
Direct decoding for task-oriented dialogue is known to suffer from the explaining-away effect, manifested in models that prefer short and generic responses. Here we argue for the use of Bayes’ theorem to factorize the dialogue task into two models, the distribution of the context given the response, and the prior for the response itself. This approach, an instantiation of the noisy channel model, both mitigates the explaining-away effect and allows the principled incorporation of large pretrained models for the response prior. We present extensive experiments showing that a noisy channel model decodes better responses compared to direct decoding and that a two-stage pretraining strategy, employing both open-domain and task-oriented dialogue data, improves over randomly initialized models.
We apply a generative segmental model of task structure, guided by narration, to action segmentation in video. We focus on unsupervised and weakly-supervised settings where no action labels are known during training. Despite its simplicity, our model performs competitively with previous work on a dataset of naturalistic instructional videos. Our model allows us to vary the sources of supervision used in training, and we find that both task structure and narrative language provide large benefits in segmentation quality.
To increase trust in artificial intelligence systems, a promising research direction consists of designing neural models capable of generating natural language explanations for their predictions. In this work, we show that such models are nonetheless prone to generating mutually inconsistent explanations, such as ”Because there is a dog in the image.” and ”Because there is no dog in the [same] image.”, exposing flaws in either the decision-making process of the model or in the generation of the explanations. We introduce a simple yet effective adversarial framework for sanity checking models against the generation of inconsistent natural language explanations. Moreover, as part of the framework, we address the problem of adversarial attacks with full target sequences, a scenario that was not previously addressed in sequence-to-sequence attacks. Finally, we apply our framework on a state-of-the-art neural natural language inference model that provides natural language explanations for its predictions. Our framework shows that this model is capable of generating a significant number of inconsistent explanations.
Unsupervised speech representation learning has shown remarkable success at finding representations that correlate with phonetic structures and improve downstream speech recognition performance. However, most research has been focused on evaluating the representations in terms of their ability to improve the performance of speech recognition systems on read English (e.g. Wall Street Journal and LibriSpeech). This evaluation methodology overlooks two important desiderata that speech representations should have: robustness to domain shifts and transferability to other languages. In this paper we learn representations from up to 8000 hours of diverse and noisy speech data and evaluate the representations by looking at their robustness to domain shifts and their ability to improve recognition performance in many languages. We find that our representations confer significant robustness advantages to the resulting recognition systems: we see significant improvements in out-of-domain transfer relative to baseline feature sets and the features likewise provide improvements in 25 phonetically diverse languages.
We show that Bayes’ rule provides an effective mechanism for creating document translation models that can be learned from only parallel sentences and monolingual documents a compelling benefit because parallel documents are not always available. In our formulation, the posterior probability of a candidate translation is the product of the unconditional (prior) probability of the candidate output document and the “reverse translation probability” of translating the candidate output back into the source language. Our proposed model uses a powerful autoregressive language model as the prior on target language documents, but it assumes that each sentence is translated independently from the target to the source language. Crucially, at test time, when a source document is observed, the document language model prior induces dependencies between the translations of the source sentences in the posterior. The model’s independence assumption not only enables efficient use of available data, but it additionally admits a practical left-to-right beam-search algorithm for carrying out inference. Experiments show that our model benefits from using cross-sentence context in the language model, and it outperforms existing document translation approaches.
Textual representation learners trained on large amounts of data have achieved notable success on downstream tasks; intriguingly, they have also performed well on challenging tests of syntactic competence. Hence, it remains an open question whether scalable learners like BERT can become fully proficient in the syntax of natural language by virtue of data scale alone, or whether they still benefit from more explicit syntactic biases. To answer this question, we introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining, by distilling the syntactically informative predictions of a hierarchical—albeit harder to scale—syntactic language model. Since BERT models masked words in bidirectional context, we propose to distill the approximate marginal distribution over words in context from the syntactic LM. Our approach reduces relative error by 2–21% on a diverse set of structured prediction tasks, although we obtain mixed results on the GLUE benchmark. Our findings demonstrate the benefits of syntactic biases, even for representation learners that exploit large amounts of data, and contribute to a better understanding of where syntactic biases are helpful in benchmarks of natural language understanding.
This paper describes the DeepMind submission to the Chinese→English constrained data track of the WMT2020 Shared Task on News Translation. The submission employs a noisy channel factorization as the backbone of a document translation system. This approach allows the flexible combination of a number of independent component models which are further augmented with back-translation, distillation, fine-tuning with in-domain data, Monte-Carlo Tree Search decoding, and improved uncertainty estimation. In order to address persistent issues with the premature truncation of long sequences we included specialized length models and sentence segmentation techniques. Our final system provides a 9.9 BLEU points improvement over a baseline Transformer on our test set (newstest 2019).
Pronoun resolution is a major area of natural language understanding. However, large-scale training sets are still scarce, since manually labelling data is costly. In this work, we introduce WikiCREM (Wikipedia CoREferences Masked) a large-scale, yet accurate dataset of pronoun disambiguation instances. We use a language-model-based approach for pronoun resolution in combination with our WikiCREM dataset. We compare a series of models on a collection of diverse and challenging coreference resolution problems, where we match or outperform previous state-of-the-art approaches on 6 out of 7 datasets, such as GAP, DPR, WNLI, PDP, WinoBias, and WinoGender. We release our model to be used off-the-shelf for solving pronoun disambiguation.
Prior work has shown that, on small amounts of training data, syntactic neural language models learn structurally sensitive generalisations more successfully than sequential language models. However, their computational complexity renders scaling difficult, and it remains an open question whether structural biases are still necessary when sequential models have access to ever larger amounts of training data. To answer this question, we introduce an efficient knowledge distillation (KD) technique that transfers knowledge from a syntactic language model trained on a small corpus to an LSTM language model, hence enabling the LSTM to develop a more structurally sensitive representation of the larger training data it learns from. On targeted syntactic evaluations, we find that, while sequential LSTMs perform much better than previously reported, our proposed technique substantially improves on this baseline, yielding a new state of the art. Our findings and analysis affirm the importance of structural biases, even in models that learn from large amounts of data.
We propose a segmental neural language model that combines the generalization power of neural networks with the ability to discover word-like units that are latent in unsegmented character sequences. In contrast to previous segmentation models that treat word segmentation as an isolated task, our model unifies word discovery, learning how words fit together to form sentences, and, by conditioning the model on visual context, how words’ meanings ground in representations of nonlinguistic modalities. Experiments show that the unconditional model learns predictive distributions better than character LSTM models, discovers words competitively with nonparametric Bayesian word segmentation models, and that modeling language conditional on visual context improves performance on both.
We present neural syntactic generative models with exact marginalization that support both dependency parsing and language modeling. Exact marginalization is made tractable through dynamic programming over shift-reduce parsing and minimal RNN-based feature sets. Our algorithms complement previous approaches by supporting batched training and enabling online computation of next word probabilities. For supervised dependency parsing, our model achieves a state-of-the-art result among generative approaches. We also report empirical results on unsupervised syntactic models and their role in language modeling. We find that our model formulation of latent dependencies with exact marginalization do not lead to better intrinsic language modeling performance than vanilla RNNs, and that parsing accuracy is not correlated with language modeling perplexity in stack-based models.
Language exhibits hierarchical structure, but recent work using a subject-verb agreement diagnostic argued that state-of-the-art language models, LSTMs, fail to learn long-range syntax sensitive dependencies. Using the same diagnostic, we show that, in fact, LSTMs do succeed in learning such dependencies—provided they have enough capacity. We then explore whether models that have access to explicit syntactic information learn agreement more effectively, and how the way in which this structural information is incorporated into the model impacts performance. We find that the mere presence of syntactic information does not improve accuracy, but when model architecture is determined by syntax, number agreement is improved. Further, we find that the choice of how syntactic structure is built affects how well number agreement is learned: top-down construction outperforms left-corner and bottom-up variants in capturing non-local structural dependencies.
Reading comprehension (RC)—in contrast to information retrieval—requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selecting answers using superficial information (e.g., local context similarity or global term frequency); they thus fail to test for the essential integrative aspect of RC. To encourage progress on deeper comprehension of language, we present a new dataset and set of tasks in which the reader must answer questions about stories by reading entire books or movie scripts. These tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience. We show that although humans solve the tasks easily, standard RC models struggle on the tasks presented here. We provide an analysis of the dataset and the challenges it presents.
We propose a general class of language models that treat reference as discrete stochastic latent variables. This decision allows for the creation of entity mentions by accessing external databases of referents (required by, e.g., dialogue generation) or past internal state (required to explicitly model coreferentiality). Beyond simple copying, our coreference model can additionally refer to a referent using varied mention forms (e.g., a reference to “Jane” can be realized as “she”), a characteristic feature of reference in natural languages. Experiments on three representative applications show our model variants outperform models based on deterministic attention and standard language modeling baselines.
Solving algebraic word problems requires executing a series of arithmetic operations—a program—to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs.
Parsing sentences to linguistically-expressive semantic representations is a key goal of Natural Language Processing. Yet statistical parsing has focussed almost exclusively on bilexical dependencies or domain-specific logical forms. We propose a neural encoder-decoder transition-based parser which is the first full-coverage semantic graph parser for Minimal Recursion Semantics (MRS). The model architecture uses stack-based embedding features, predicting graphs jointly with unlexicalized predicates and their token alignments. Our parser is more accurate than attention-based baselines on MRS, and on an additional Abstract Meaning Representation (AMR) benchmark, and GPU batch processing makes it an order of magnitude faster than a high-precision grammar-based parser. Further, the 86.69% Smatch score of our MRS parser is higher than the upper-bound on AMR parsing, making MRS an attractive choice as a semantic representation.
Fixed-vocabulary language models fail to account for one of the most characteristic statistical facts of natural language: the frequent creation and reuse of new word types. Although character-level language models offer a partial solution in that they can create word types not attested in the training corpus, they do not capture the “bursty” distribution of such words. In this paper, we augment a hierarchical LSTM language model that generates sequences of word tokens character by character with a caching mechanism that learns to reuse previously generated words. To validate our model we construct a new open-vocabulary language modeling corpus (the Multilingual Wikipedia Corpus; MWC) from comparable Wikipedia articles in 7 typologically diverse languages and demonstrate the effectiveness of our model across this range of languages.
We present a neural encoder-decoder AMR parser that extends an attention-based model by predicting the alignment between graph nodes and sentence tokens explicitly with a pointer mechanism. Candidate lemmas are predicted as a pre-processing step so that the lemmas of lexical concepts, as well as constant strings, are factored out of the graph linearization and recovered through the predicted alignments. The approach does not rely on syntactic parses or extensive external resources. Our parser obtained 59% Smatch on the SemEval test set.