Phil Woodland


2024

pdf bib
Modelling Variability in Human Annotator Simulation
Wen Wu | Wenlin Chen | Chao Zhang | Phil Woodland
Findings of the Association for Computational Linguistics ACL 2024

Human annotator simulation (HAS) serves as a cost-effective substitute for human evaluation tasks such as data annotation and system assessment. It is important to incorporate the variability present in human evaluation into HAS, since it helps capture diverse subjective interpretations and mitigate potential biases and over-representation. This work introduces a novel framework for modelling variability in HAS. Conditional softmax flow (S-CNF) is proposed to model the distribution of subjective human annotations, which leverages diverse human annotations via meta-learning. This enables efficient generation of annotations that exhibit human variability for unlabelled input. In addition, a wide range of evaluation metrics are adopted to assess the capability and efficiency of HAS systems in predicting the aggregated behaviours of human annotators, matching the distribution of human annotations, and simulating the inter-annotator disagreements. Results demonstrate that the proposed method achieves state-of-the-art performance on two real-world human evaluation tasks: emotion recognition and toxic speech detection.

pdf bib
Speech-based Slot Filling using Large Language Models
Guangzhi Sun | Shutong Feng | Dongcheng Jiang | Chao Zhang | Milica Gasic | Phil Woodland
Findings of the Association for Computational Linguistics ACL 2024

Recently, advancements in large language models (LLMs) have shown an unprecedented ability across various language tasks. This paper investigates the potential application of LLMs to slot filling with noisy ASR transcriptions, via both in-context learning and task-specific fine-tuning. Dedicated prompt designs and noise-robust LoRA fine-tuning are proposed to improve the robustness of LLMs for slot filling with noisy ASR transcriptions. Moreover, a linearised knowledge injection (LKI) scheme is also proposed to integrate dynamic external knowledge into LLMs. Experiments were performed on SLURP to quantify the performance of LLMs, including GPT-3.5-turbo, GPT-4, LLaMA-13B, LLaMA-2-13B and Vicuna-13B (v1.1 and v1.5) with different ASR error rates. The use of the noise-robust fine-tuning together with LKI for Vicuna-13B-v1.5 achieved 6.7% and 17.6% absolute SLU-F1 improvements compared to a fully fine-tuned Flan-T5-XL model on the limited data setup and the zero-shot setup respectively.

pdf bib
Handling Ambiguity in Emotion: From Out-of-Domain Detection to Distribution Estimation
Wen Wu | Bo Li | Chao Zhang | Chung-Cheng Chiu | Qiujia Li | Junwen Bai | Tara Sainath | Phil Woodland
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The subjective perception of emotion leads to inconsistent labels from human annotators. Typically, utterances lacking majority-agreed labels are excluded when training an emotion classifier, which cause problems when encountering ambiguous emotional expressions during testing. This paper investigates three methods to handle ambiguous emotion. First, we show that incorporating utterances without majority-agreed labels as an additional class in the classifier reduces the classification performance of the other emotion classes. Then, we propose detecting utterances with ambiguous emotions as out-of-domain samples by quantifying the uncertainty in emotion classification using evidential deep learning. This approach retains the classification accuracy while effectively detects ambiguous emotion expressions. Furthermore, to obtain fine-grained distinctions among ambiguous emotions, we propose representing emotion as a distribution instead of a single class label. The task is thus re-framed from classification to distribution estimation where every individual annotation is taken into account, not just the majority opinion. The evidential uncertainty measure is extended to quantify the uncertainty in emotion distribution estimation. Experimental results on the IEMOCAP and CREMA-D datasets demonstrate the superior capability of the proposed method in terms of majority class prediction, emotion distribution estimation, and uncertainty estimation.

pdf bib
Label-Synchronous Neural Transducer for E2E Simultaneous Speech Translation
Keqi Deng | Phil Woodland
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While the neural transducer is popular for online speech recognition, simultaneous speech translation (SST) requires both streaming and re-ordering capabilities. This paper presents the LS-Transducer-SST, a label-synchronous neural transducer for SST, which naturally possesses these two properties. The LS-Transducer-SST dynamically decides when to emit translation tokens based on an Auto-regressive Integrate-and-Fire (AIF) mechanism. A latency-controllable AIF is also proposed, which can control the quality-latency trade-off either only during decoding, or it can be used in both decoding and training. The LS-Transducer-SST can naturally utilise monolingual text-only data via its prediction network which helps alleviate the key issue of data sparsity for E2E SST. During decoding, a chunk-based incremental joint decoding technique is designed to refine and expand the search space. Experiments on the Fisher-CallHome Spanish (Es-En) and MuST-C En-De data show that the LS-Transducer-SST gives a better quality-latency trade-off than existing popular methods. For example, the LS-Transducer-SST gives a 3.1/2.9 point BLEU increase (Es-En/En-De) relative to CAAT at a similar latency and a 1.4 s reduction in average lagging latency with similar BLEU scores relative to Wait-k.