Philipp Heinisch


2022

pdf bib
Strategies for framing argumentative conclusion generation
Philipp Heinisch | Anette Frank | Juri Opitz | Philipp Cimiano
Proceedings of the 15th International Conference on Natural Language Generation

pdf bib
Data Augmentation for Improving the Prediction of Validity and Novelty of Argumentative Conclusions
Philipp Heinisch | Moritz Plenz | Juri Opitz | Anette Frank | Philipp Cimiano
Proceedings of the 9th Workshop on Argument Mining

We address the problem of automatically predicting the quality of a conclusion given a set of (textual) premises of an argument, focusing in particular on the task of predicting the validity and novelty of the argumentative conclusion. We propose a multi-task approach that jointly predicts the validity and novelty of the textual conclusion, relying on pre-trained language models fine-tuned on the task. As training data for this task is scarce and costly to obtain, we experimentally investigate the impact of data augmentation approaches for improving the accuracy of prediction compared to a baseline that relies on task-specific data only. We consider the generation of synthetic data as well as the integration of datasets from related argument tasks. We show that especially our synthetic data, combined with class-balancing and instance-specific learning rates, substantially improves classification results (+15.1 points in F1-score). Using only training data retrieved from related datasets by automatically labeling them for validity and novelty, combined with synthetic data, outperforms the baseline by 11.5 points in F1-score.

pdf bib
Overview of the 2022 Validity and Novelty Prediction Shared Task
Philipp Heinisch | Anette Frank | Juri Opitz | Moritz Plenz | Philipp Cimiano
Proceedings of the 9th Workshop on Argument Mining

This paper provides an overview of the Argument Validity and Novelty Prediction Shared Task that was organized as part of the 9th Workshop on Argument Mining (ArgMining 2022). The task focused on the prediction of the validity and novelty of a conclusion given a textual premise. Validity is defined as the degree to which the conclusion is justified with respect to the given premise. Novelty defines the degree to which the conclusion contains content that is new in relation to the premise. Six groups participated in the task, submitting overall 13 system runs for the subtask of binary classification and 2 system runs for the subtask of relative classification. The results reveal that the task is challenging, with best results obtained for Validity prediction in the range of 75% F1 score, for Novelty prediction of 70% F1 score and for correctly predicting both Validity and Novelty of 45% F1 score. In this paper we summarize the task definition and dataset. We give an overview of the results obtained by the participating systems, as well as insights to be gained from the diverse contributions.

2021

pdf bib
Explainable Unsupervised Argument Similarity Rating with Abstract Meaning Representation and Conclusion Generation
Juri Opitz | Philipp Heinisch | Philipp Wiesenbach | Philipp Cimiano | Anette Frank
Proceedings of the 8th Workshop on Argument Mining

When assessing the similarity of arguments, researchers typically use approaches that do not provide interpretable evidence or justifications for their ratings. Hence, the features that determine argument similarity remain elusive. We address this issue by introducing novel argument similarity metrics that aim at high performance and explainability. We show that Abstract Meaning Representation (AMR) graphs can be useful for representing arguments, and that novel AMR graph metrics can offer explanations for argument similarity ratings. We start from the hypothesis that similar premises often lead to similar conclusions—and extend an approach for AMR-based argument similarity rating by estimating, in addition, the similarity of conclusions that we automatically infer from the arguments used as premises. We show that AMR similarity metrics make argument similarity judgements more interpretable and may even support argument quality judgements. Our approach provides significant performance improvements over strong baselines in a fully unsupervised setting. Finally, we make first steps to address the problem of reference-less evaluation of argumentative conclusion generations.

pdf bib
Key Point Analysis via Contrastive Learning and Extractive Argument Summarization
Milad Alshomary | Timon Gurcke | Shahbaz Syed | Philipp Heinisch | Maximilian Spliethöver | Philipp Cimiano | Martin Potthast | Henning Wachsmuth
Proceedings of the 8th Workshop on Argument Mining

Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis Shared Task, colocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task.