Philipp Meier


2023

pdf bib
SMARAGD: Learning SMatch for Accurate and Rapid Approximate Graph Distance
Juri Opitz | Philipp Meier | Anette Frank
Proceedings of the 15th International Conference on Computational Semantics

The similarity of graph structures, such as Meaning Representations (MRs), is often assessed via structural matching algorithms, such as Smatch (Cai & Knight 2013). However, Smatch involves a combinatorial problem that suffers from NP-completeness, making large-scale applications, e.g., graph clustering or search, infeasible. To alleviate this issue, we learn SMARAGD: Semantic Match for Accurate and Rapid Approximate Graph Distance. We show the potential of neural networks to approximate Smatch scores, i) in linear time using a machine translation framework to predict alignments, or ii) in constant time using a Siamese CNN to directly predict Smatch scores. We show that the approximation error can be substantially reduced through data augmentation and graph anonymization.