Phu Mon Htut


2022

pdf bib
Clustering Examples in Multi-Dataset Benchmarks with Item Response Theory
Pedro Rodriguez | Phu Mon Htut | John Lalor | João Sedoc
Proceedings of the Third Workshop on Insights from Negative Results in NLP

In natural language processing, multi-dataset benchmarks for common tasks (e.g., SuperGLUE for natural language inference and MRQA for question answering) have risen in importance. Invariably, tasks and individual examples vary in difficulty. Recent analysis methods infer properties of examples such as difficulty. In particular, Item Response Theory (IRT) jointly infers example and model properties from the output of benchmark tasks (i.e., scores for each model-example pair). Therefore, it seems sensible that methods like IRT should be able to detect differences between datasets in a task. This work shows that current IRT models are not as good at identifying differences as we would expect, explain why this is difficult, and outline future directions that incorporate more (textual) signal from examples.

pdf bib
BBQ: A hand-built bias benchmark for question answering
Alicia Parrish | Angelica Chen | Nikita Nangia | Vishakh Padmakumar | Jason Phang | Jana Thompson | Phu Mon Htut | Samuel Bowman
Findings of the Association for Computational Linguistics: ACL 2022

It is well documented that NLP models learn social biases, but little work has been done on how these biases manifest in model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset of question-sets constructed by the authors that highlight attested social biases against people belonging to protected classes along nine social dimensions relevant for U.S. English-speaking contexts. Our task evaluate model responses at two levels: (i) given an under-informative context, we test how strongly responses reflect social biases, and (ii) given an adequately informative context, we test whether the model’s biases override a correct answer choice. We find that models often rely on stereotypes when the context is under-informative, meaning the model’s outputs consistently reproduce harmful biases in this setting. Though models are more accurate when the context provides an informative answer, they still rely on stereotypes and average up to 3.4 percentage points higher accuracy when the correct answer aligns with a social bias than when it conflicts, with this difference widening to over 5 points on examples targeting gender for most models tested.

2021

pdf bib
Comparing Test Sets with Item Response Theory
Clara Vania | Phu Mon Htut | William Huang | Dhara Mungra | Richard Yuanzhe Pang | Jason Phang | Haokun Liu | Kyunghyun Cho | Samuel R. Bowman
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent years have seen numerous NLP datasets introduced to evaluate the performance of fine-tuned models on natural language understanding tasks. Recent results from large pretrained models, though, show that many of these datasets are largely saturated and unlikely to be able to detect further progress. What kind of datasets are still effective at discriminating among strong models, and what kind of datasets should we expect to be able to detect future improvements? To measure this uniformly across datasets, we draw on Item Response Theory and evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples. We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models, while SNLI, MNLI, and CommitmentBank seem to be saturated for current strong models. We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.

2020

pdf bib
Intermediate-Task Transfer Learning with Pretrained Language Models: When and Why Does It Work?
Yada Pruksachatkun | Jason Phang | Haokun Liu | Phu Mon Htut | Xiaoyi Zhang | Richard Yuanzhe Pang | Clara Vania | Katharina Kann | Samuel R. Bowman
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While pretrained models such as BERT have shown large gains across natural language understanding tasks, their performance can be improved by further training the model on a data-rich intermediate task, before fine-tuning it on a target task. However, it is still poorly understood when and why intermediate-task training is beneficial for a given target task. To investigate this, we perform a large-scale study on the pretrained RoBERTa model with 110 intermediate-target task combinations. We further evaluate all trained models with 25 probing tasks meant to reveal the specific skills that drive transfer. We observe that intermediate tasks requiring high-level inference and reasoning abilities tend to work best. We also observe that target task performance is strongly correlated with higher-level abilities such as coreference resolution. However, we fail to observe more granular correlations between probing and target task performance, highlighting the need for further work on broad-coverage probing benchmarks. We also observe evidence that the forgetting of knowledge learned during pretraining may limit our analysis, highlighting the need for further work on transfer learning methods in these settings.

pdf bib
jiant: A Software Toolkit for Research on General-Purpose Text Understanding Models
Yada Pruksachatkun | Phil Yeres | Haokun Liu | Jason Phang | Phu Mon Htut | Alex Wang | Ian Tenney | Samuel R. Bowman
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We introduce jiant, an open source toolkit for conducting multitask and transfer learning experiments on English NLU tasks. jiant enables modular and configuration driven experimentation with state-of-the-art models and a broad set of tasks for probing, transfer learning, and multitask training experiments. jiant implements over 50 NLU tasks, including all GLUE and SuperGLUE benchmark tasks. We demonstrate that jiant reproduces published performance on a variety of tasks and models, e.g., RoBERTa and BERT.

pdf bib
English Intermediate-Task Training Improves Zero-Shot Cross-Lingual Transfer Too
Jason Phang | Iacer Calixto | Phu Mon Htut | Yada Pruksachatkun | Haokun Liu | Clara Vania | Katharina Kann | Samuel R. Bowman
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Intermediate-task training—fine-tuning a pretrained model on an intermediate task before fine-tuning again on the target task—often improves model performance substantially on language understanding tasks in monolingual English settings. We investigate whether English intermediate-task training is still helpful on non-English target tasks. Using nine intermediate language-understanding tasks, we evaluate intermediate-task transfer in a zero-shot cross-lingual setting on the XTREME benchmark. We see large improvements from intermediate training on the BUCC and Tatoeba sentence retrieval tasks and moderate improvements on question-answering target tasks. MNLI, SQuAD and HellaSwag achieve the best overall results as intermediate tasks, while multi-task intermediate offers small additional improvements. Using our best intermediate-task models for each target task, we obtain a 5.4 point improvement over XLM-R Large on the XTREME benchmark, setting the state of the art as of June 2020. We also investigate continuing multilingual MLM during intermediate-task training and using machine-translated intermediate-task data, but neither consistently outperforms simply performing English intermediate-task training.

2019

pdf bib
The Unbearable Weight of Generating Artificial Errors for Grammatical Error Correction
Phu Mon Htut | Joel Tetreault
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

In this paper, we investigate the impact of using 4 recent neural models for generating artificial errors to help train the neural grammatical error correction models. We conduct a battery of experiments on the effect of data size, models, and comparison with a rule-based approach.

pdf bib
Investigating BERT’s Knowledge of Language: Five Analysis Methods with NPIs
Alex Warstadt | Yu Cao | Ioana Grosu | Wei Peng | Hagen Blix | Yining Nie | Anna Alsop | Shikha Bordia | Haokun Liu | Alicia Parrish | Sheng-Fu Wang | Jason Phang | Anhad Mohananey | Phu Mon Htut | Paloma Jeretic | Samuel R. Bowman
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Though state-of-the-art sentence representation models can perform tasks requiring significant knowledge of grammar, it is an open question how best to evaluate their grammatical knowledge. We explore five experimental methods inspired by prior work evaluating pretrained sentence representation models. We use a single linguistic phenomenon, negative polarity item (NPI) licensing, as a case study for our experiments. NPIs like any are grammatical only if they appear in a licensing environment like negation (Sue doesn’t have any cats vs. *Sue has any cats). This phenomenon is challenging because of the variety of NPI licensing environments that exist. We introduce an artificially generated dataset that manipulates key features of NPI licensing for the experiments. We find that BERT has significant knowledge of these features, but its success varies widely across different experimental methods. We conclude that a variety of methods is necessary to reveal all relevant aspects of a model’s grammatical knowledge in a given domain.

2018

pdf bib
Grammar Induction with Neural Language Models: An Unusual Replication
Phu Mon Htut | Kyunghyun Cho | Samuel Bowman
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

Grammar induction is the task of learning syntactic structure without the expert-labeled treebanks (Charniak and Carroll, 1992; Klein and Manning, 2002). Recent work on latent tree learning offers a new family of approaches to this problem by inducing syntactic structure using the supervision from a downstream NLP task (Yogatama et al., 2017; Maillard et al., 2017; Choi et al., 2018). In a recent paper published at ICLR, Shen et al. (2018) introduce such a model and report near state-of-the-art results on the target task of language modeling, and the first strong latent tree learning result on constituency parsing. During the analysis of this model, we discover issues that make the original results hard to trust, including tuning and even training on what is effectively the test set. Here, we analyze the model under different configurations to understand what it learns and to identify the conditions under which it succeeds. We find that this model represents the first empirical success for neural network latent tree learning, and that neural language modeling warrants further study as a setting for grammar induction.

pdf bib
Training a Ranking Function for Open-Domain Question Answering
Phu Mon Htut | Samuel Bowman | Kyunghyun Cho
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

In recent years, there have been amazing advances in deep learning methods for machine reading. In machine reading, the machine reader has to extract the answer from the given ground truth paragraph. Recently, the state-of-the-art machine reading models achieve human level performance in SQuAD which is a reading comprehension-style question answering (QA) task. The success of machine reading has inspired researchers to combine Information Retrieval with machine reading to tackle open-domain QA. However, these systems perform poorly compared to reading comprehension-style QA because it is difficult to retrieve the pieces of paragraphs that contain the answer to the question. In this study, we propose two neural network rankers that assign scores to different passages based on their likelihood of containing the answer to a given question. Additionally, we analyze the relative importance of semantic similarity and word level relevance matching in open-domain QA.

pdf bib
Grammar Induction with Neural Language Models: An Unusual Replication
Phu Mon Htut | Kyunghyun Cho | Samuel Bowman
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

A substantial thread of recent work on latent tree learning has attempted to develop neural network models with parse-valued latent variables and train them on non-parsing tasks, in the hope of having them discover interpretable tree structure. In a recent paper, Shen et al. (2018) introduce such a model and report near-state-of-the-art results on the target task of language modeling, and the first strong latent tree learning result on constituency parsing. In an attempt to reproduce these results, we discover issues that make the original results hard to trust, including tuning and even training on what is effectively the test set. Here, we attempt to reproduce these results in a fair experiment and to extend them to two new datasets. We find that the results of this work are robust: All variants of the model under study outperform all latent tree learning baselines, and perform competitively with symbolic grammar induction systems. We find that this model represents the first empirical success for latent tree learning, and that neural network language modeling warrants further study as a setting for grammar induction.