Pia Schwarz


2024

pdf bib
Semiautomatic Data Generation for Academic Named Entity Recognition in German Text Corpora
Pia Schwarz
Proceedings of the 20th Conference on Natural Language Processing (KONVENS 2024)

2020

pdf bib
TUE at SemEval-2020 Task 1: Detecting Semantic Change by Clustering Contextual Word Embeddings
Anna Karnysheva | Pia Schwarz
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes our system for SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. Target words of corpora from two different time periods are classified according to their semantic change. The languages covered are English, German, Latin, and Swedish. Our approach involves clustering ELMo embeddings using DBSCAN and K-means. For a more fine grained detection of semantic change we take the Jensen-Shannon Distance metric and rank the target words from strongest to weakest change. The results show that this is a valid approach for the classification subtask where we rank 13th out of 33 groups with an accuracy score of 61.2%. For the ranking subtask we score a Spearman’s rank-order correlation coefficient of 0.087 which places us on rank 29.