Pierre Colombo


2022

pdf bib
Learning Disentangled Textual Representations via Statistical Measures of Similarity
Pierre Colombo | Guillaume Staerman | Nathan Noiry | Pablo Piantanida
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

When working with textual data, a natural application of disentangled representations is the fair classification where the goal is to make predictions without being biased (or influenced) by sensible attributes that may be present in the data (e.g., age, gender or race). Dominant approaches to disentangle a sensitive attribute from textual representations rely on learning simultaneously a penalization term that involves either an adversary loss (e.g., a discriminator) or an information measure (e.g., mutual information). However, these methods require the training of a deep neural network with several parameter updates for each update of the representation model. As a matter of fact, the resulting nested optimization loop is both times consuming, adding complexity to the optimization dynamic, and requires a fine hyperparameter selection (e.g., learning rates, architecture). In this work, we introduce a family of regularizers for learning disentangled representations that do not require training. These regularizers are based on statistical measures of similarity between the conditional probability distributions with respect to the sensible attributes. Our novel regularizers do not require additional training, are faster and do not involve additional tuning while achieving better results both when combined with pretrained and randomly initialized text encoders.

2021

pdf bib
Improving Multimodal fusion via Mutual Dependency Maximisation
Pierre Colombo | Emile Chapuis | Matthieu Labeau | Chloé Clavel
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Multimodal sentiment analysis is a trending area of research, and multimodal fusion is one of its most active topic. Acknowledging humans communicate through a variety of channels (i.e visual, acoustic, linguistic), multimodal systems aim at integrating different unimodal representations into a synthetic one. So far, a consequent effort has been made on developing complex architectures allowing the fusion of these modalities. However, such systems are mainly trained by minimising simple losses such as L1 or cross-entropy. In this work, we investigate unexplored penalties and propose a set of new objectives that measure the dependency between modalities. We demonstrate that our new penalties lead to a consistent improvement (up to 4.3 on accuracy) across a large variety of state-of-the-art models on two well-known sentiment analysis datasets: CMU-MOSI and CMU-MOSEI. Our method not only achieves a new SOTA on both datasets but also produces representations that are more robust to modality drops. Finally, a by-product of our methods includes a statistical network which can be used to interpret the high dimensional representations learnt by the model.

pdf bib
Code-switched inspired losses for spoken dialog representations
Pierre Colombo | Emile Chapuis | Matthieu Labeau | Chloé Clavel
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Spoken dialogue systems need to be able to handle both multiple languages and multilinguality inside a conversation (e.g in case of code-switching). In this work, we introduce new pretraining losses tailored to learn generic multilingual spoken dialogue representations. The goal of these losses is to expose the model to code-switched language. In order to scale up training, we automatically build a pretraining corpus composed of multilingual conversations in five different languages (French, Italian, English, German and Spanish) from OpenSubtitles, a huge multilingual corpus composed of 24.3G tokens. We test the generic representations on MIAM, a new benchmark composed of five dialogue act corpora on the same aforementioned languages as well as on two novel multilingual tasks (i.e multilingual mask utterance retrieval and multilingual inconsistency identification). Our experiments show that our new losses achieve a better performance in both monolingual and multilingual settings.

pdf bib
Automatic Text Evaluation through the Lens of Wasserstein Barycenters
Pierre Colombo | Guillaume Staerman | Chloé Clavel | Pablo Piantanida
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

A new metric BaryScore to evaluate text generation based on deep contextualized embeddings (e.g., BERT, Roberta, ELMo) is introduced. This metric is motivated by a new framework relying on optimal transport tools, i.e., Wasserstein distance and barycenter. By modelling the layer output of deep contextualized embeddings as a probability distribution rather than by a vector embedding; this framework provides a natural way to aggregate the different outputs through the Wasserstein space topology. In addition, it provides theoretical grounds to our metric and offers an alternative to available solutions (e.g., MoverScore and BertScore). Numerical evaluation is performed on four different tasks: machine translation, summarization, data2text generation and image captioning. Our results show that BaryScore outperforms other BERT based metrics and exhibits more consistent behaviour in particular for text summarization.

pdf bib
A Novel Estimator of Mutual Information for Learning to Disentangle Textual Representations
Pierre Colombo | Pablo Piantanida | Chloé Clavel
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Learning disentangled representations of textual data is essential for many natural language tasks such as fair classification, style transfer and sentence generation, among others. The existent dominant approaches in the context of text data either rely on training an adversary (discriminator) that aims at making attribute values difficult to be inferred from the latent code or rely on minimising variational bounds of the mutual information between latent code and the value attribute. However, the available methods suffer of the impossibility to provide a fine-grained control of the degree (or force) of disentanglement. In contrast to adversarial methods, which are remarkably simple, although the adversary seems to be performing perfectly well during the training phase, after it is completed a fair amount of information about the undesired attribute still remains. This paper introduces a novel variational upper bound to the mutual information between an attribute and the latent code of an encoder. Our bound aims at controlling the approximation error via the Renyi’s divergence, leading to both better disentangled representations and in particular, a precise control of the desirable degree of disentanglement than state-of-the-art methods proposed for textual data. Furthermore, it does not suffer from the degeneracy of other losses in multi-class scenarios. We show the superiority of this method on fair classification and on textual style transfer tasks. Additionally, we provide new insights illustrating various trade-offs in style transfer when attempting to learn disentangled representations and quality of the generated sentence.

pdf bib
Beam Search with Bidirectional Strategies for Neural Response Generation
Pierre Colombo | Chloé Clavel | Chouchang Yack | Giovanna Varni
Proceedings of The Fourth International Conference on Natural Language and Speech Processing (ICNLSP 2021)

2020

pdf bib
The importance of fillers for text representations of speech transcripts
Tanvi Dinkar | Pierre Colombo | Matthieu Labeau | Chloé Clavel
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

While being an essential component of spoken language, fillers (e.g. “um” or “uh”) often remain overlooked in Spoken Language Understanding (SLU) tasks. We explore the possibility of representing them with deep contextualised embeddings, showing improvements on modelling spoken language and two downstream tasks — predicting a speaker’s stance and expressed confidence.

pdf bib
Hierarchical Pre-training for Sequence Labelling in Spoken Dialog
Emile Chapuis | Pierre Colombo | Matteo Manica | Matthieu Labeau | Chloé Clavel
Findings of the Association for Computational Linguistics: EMNLP 2020

Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a key component of spoken dialog systems. In this work, we propose a new approach to learn generic representations adapted to spoken dialog, which we evaluate on a new benchmark we call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE). SILICONE is model-agnostic and contains 10 different datasets of various sizes. We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives. Pre-training is performed on OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We demonstrate how hierarchical encoders achieve competitive results with consistently fewer parameters compared to state-of-the-art models and we show their importance for both pre-training and fine-tuning.

2019

pdf bib
Affect-Driven Dialog Generation
Pierre Colombo | Wojciech Witon | Ashutosh Modi | James Kennedy | Mubbasir Kapadia
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

The majority of current systems for end-to-end dialog generation focus on response quality without an explicit control over the affective content of the responses. In this paper, we present an affect-driven dialog system, which generates emotional responses in a controlled manner using a continuous representation of emotions. The system achieves this by modeling emotions at a word and sequence level using: (1) a vector representation of the desired emotion, (2) an affect regularizer, which penalizes neutral words, and (3) an affect sampling method, which forces the neural network to generate diverse words that are emotionally relevant. During inference, we use a re-ranking procedure that aims to extract the most emotionally relevant responses using a human-in-the-loop optimization process. We study the performance of our system in terms of both quantitative (BLEU score and response diversity), and qualitative (emotional appropriateness) measures.

pdf bib
From the Token to the Review: A Hierarchical Multimodal approach to Opinion Mining
Alexandre Garcia | Pierre Colombo | Florence d’Alché-Buc | Slim Essid | Chloé Clavel
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The task of predicting fine grained user opinion based on spontaneous spoken language is a key problem arising in the development of Computational Agents as well as in the development of social network based opinion miners. Unfortunately, gathering reliable data on which a model can be trained is notoriously difficult and existing works rely only on coarsely labeled opinions. In this work we aim at bridging the gap separating fine grained opinion models already developed for written language and coarse grained models developed for spontaneous multimodal opinion mining. We take advantage of the implicit hierarchical structure of opinions to build a joint fine and coarse grained opinion model that exploits different views of the opinion expression. The resulting model shares some properties with attention-based models and is shown to provide competitive results on a recently released multimodal fine grained annotated corpus.

2018

pdf bib
Disney at IEST 2018: Predicting Emotions using an Ensemble
Wojciech Witon | Pierre Colombo | Ashutosh Modi | Mubbasir Kapadia
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

This paper describes our participating system in the WASSA 2018 shared task on emotion prediction. The task focuses on implicit emotion prediction in a tweet. In this task, keywords corresponding to the six emotion labels used (anger, fear, disgust, joy, sad, and surprise) have been removed from the tweet text, making emotion prediction implicit and the task challenging. We propose a model based on an ensemble of classifiers for prediction. Each classifier uses a sequence of Convolutional Neural Network (CNN) architecture blocks and uses ELMo (Embeddings from Language Model) as an input. Our system achieves a 66.2% F1 score on the test set. The best performing system in the shared task has reported a 71.4% F1 score.