Pierre-Yves Vandenbussche
2021
Word Sense Disambiguation with Transformer Models
Pierre-Yves Vandenbussche
|
Tony Scerri
|
Ron Daniel Jr.
Proceedings of the 6th Workshop on Semantic Deep Learning (SemDeep-6)
2014
A Method for Building Burst-Annotated Co-Occurrence Networks for Analysing Trends in Textual Data
Yutaka Mitsuishi
|
Vít Nováček
|
Pierre-Yves Vandenbussche
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)
This paper presents a method for constructing a specific type of language resources that are conveniently applicable to analysis of trending topics in time-annotated textual data. More specifically, the method consists of building a co-occurrence network from the on-line content (such as New York Times articles) that conform to key words selected by users (e.g., ‘Arab Spring’). Within the network, burstiness of the particular nodes (key words) and edges (co-occurrence relations) is computed. A service deployed on the network then facilitates exploration of the underlying text in order to identify trending topics. Using the graph structure of the network, one can assess also a broader context of the trending events. To limit the information overload of users, we filter the edges and nodes displayed by their burstiness scores to show only the presumably more important ones. The paper gives details on the proposed method, including a step-by-step walk through with plenty of real data examples. We report on a specific application of our method to the topic of ‘Arab Spring’ and make the language resource applied therein publicly available for experimentation. Last but not least, we outline a methodology of an ongoing evaluation of our method.