Pingjie Wang


2024

pdf bib
CE-VDG: Counterfactual Entropy-based Bias Reduction for Video-grounded Dialogue Generation
Hongcheng Liu | Pingjie Wang | Zhiyuan Zhu | Yanfeng Wang | Yu Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The Video-Grounded Dialogue generation (VDG) is a challenging task requiring a comprehensive understanding of the multi-modal information to produce a pertinent response. However, VDG models may rely on dataset bias as a shortcut and fail to learn the multi-modal knowledge from both video and audio. Counterfactual reasoning is an effective method that can estimate and eliminate bias on some special aspects of classification tasks. However, conventional counterfactual reasoning cannot be applied to VDG tasks directly due to the BPE algorithm. In this paper, we reformulate the counterfactual reasoning from the information entropy perspective and extend it from the classification task to the generative task, which can effectively reduce the question-related bias in the auto-regressive generation task. We design CE-VDG to demonstrate the effectiveness in bias elimination of the reformulated counterfactual reasoning by using the proposed counterfactual entropy as an external loss. Extensive experiment results on two popular VDG datasets show the superiority of CE-VDG over the existing baseline method, demonstrating the effective debiasing capability in our model considering counterfactual entropy.

pdf bib
Pruning before Fine-tuning: A Retraining-free Compression Framework for Pre-trained Language Models
Pingjie Wang | Hongcheng Liu | Yanfeng Wang | Yu Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Structured pruning is an effective technique for compressing pre-trained language models (PLMs), reducing model size and improving inference speed for efficient deployment. However, most of existing pruning algorithms require retraining, leading to additional computational overhead. While some retraining-free approaches have been proposed for classification tasks, they still require a fully fine-tuned model for the task, and may cause catastrophic performance degradation on generative tasks. To address these challenges, we propose P-pruning (pre-pruning), an innovative task-specific compression framework. P-pruning prunes redundant modules of PLMs before fine-tuning, reducing the costs associated with fine-tuning. We also introduce a pruning algorithm for this framework, which includes two techniques: (1) module clustering, which clusters the outputs of all heads and neurons based on the task input; and (2) centroid selection, which identifies the most salient element in each cluster and prunes the others. We apply our method to BERT and GPT-2 and evaluate its effectiveness on GLUE, SQuAD, WikiText-2, WikiText-103, and PTB datasets. Experimental results demonstrate that our approach achieves higher performance in both classification and generative tasks, while also reducing the time required for fine-tuning.