Piotr Andruszkiewicz


2024

pdf bib
Is Modularity Transferable? A Case Study through the Lens of Knowledge Distillation
Mateusz Klimaszewski | Piotr Andruszkiewicz | Alexandra Birch
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The rise of Modular Deep Learning showcases its potential in various Natural Language Processing applications. Parameter-efficient fine-tuning (PEFT) modularity has been shown to work for various use cases, from domain adaptation to multilingual setups. However, all this work covers the case where the modular components are trained and deployed within one single Pre-trained Language Model (PLM). This model-specific setup is a substantial limitation on the very modularity that modular architectures are trying to achieve. We ask whether current modular approaches are transferable between models and whether we can transfer the modules from more robust and larger PLMs to smaller ones. In this work, we aim to fill this gap via a lens of Knowledge Distillation, commonly used for model compression, and present an extremely straightforward approach to transferring pre-trained, task-specific PEFT modules between same-family PLMs. Moreover, we propose a method that allows the transfer of modules between incompatible PLMs without any change in the inference complexity. The experiments on Named Entity Recognition, Natural Language Inference, and Paraphrase Identification tasks over multiple languages and PEFT methods showcase the initial potential of transferable modularity.

pdf bib
PWEITINLP at SemEval-2024 Task 3: Two Step Emotion Cause Analysis
Sofiia Levchenko | Rafał Wolert | Piotr Andruszkiewicz
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

ECPE (emotion cause pair extraction) task was introduced to solve the shortcomings of ECE (emotion cause extraction). Models with sequential data processing abilities or complex architecture can be utilized to solve this task. Our contribution to solving Subtask 1: Textual Emotion-Cause Pair Extraction in Conversations defined in the SemEval-2024 Task 3: The Competition of Multimodal Emotion Cause Analysis in Conversations is to create a two-step solution to the ECPE task utilizing GPT-3 for emotion classification and SpanBERT for extracting the cause utterances.

2022

pdf bib
Vanilla Recurrent Neural Networks for Interpretable Semantic Textual Similarity
Piotr Andruszkiewicz | Barbara Rychalska
Proceedings of the 36th Pacific Asia Conference on Language, Information and Computation

pdf bib
Samsung Research Poland (SRPOL) at SemEval-2022 Task 9: Hybrid Question Answering Using Semantic Roles
Tomasz Dryjański | Monika Zaleska | Bartek Kuźma | Artur Błażejewski | Zuzanna Bordzicka | Paweł Bujnowski | Klaudia Firlag | Christian Goltz | Maciej Grabowski | Jakub Jończyk | Grzegorz Kłosiński | Bartłomiej Paziewski | Natalia Paszkiewicz | Jarosław Piersa | Piotr Andruszkiewicz
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

In this work we present an overview of our winning system for the R2VQ - Competence-based Multimodal Question Answering task, with the final exact match score of 92.53%.The task is structured as question-answer pairs, querying how well a system is capable of competence-based comprehension of recipes. We propose a hybrid of a rule-based system, Question Answering Transformer, and a neural classifier for N/A answers recognition. The rule-based system focuses on intent identification, data extraction and response generation.

2021

pdf bib
Multilingual Entity and Relation Extraction Dataset and Model
Alessandro Seganti | Klaudia Firląg | Helena Skowronska | Michał Satława | Piotr Andruszkiewicz
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We present a novel dataset and model for a multilingual setting to approach the task of Joint Entity and Relation Extraction. The SMiLER dataset consists of 1.1 M annotated sentences, representing 36 relations, and 14 languages. To the best of our knowledge, this is currently both the largest and the most comprehensive dataset of this type. We introduce HERBERTa, a pipeline that combines two independent BERT models: one for sequence classification, and the other for entity tagging. The model achieves micro F1 81.49 for English on this dataset, which is close to the current SOTA on CoNLL, SpERT.

pdf bib
SRPOL DIALOGUE SYSTEMS at SemEval-2021 Task 5: Automatic Generation of Training Data for Toxic Spans Detection
Michał Satława | Katarzyna Zamłyńska | Jarosław Piersa | Joanna Kolis | Klaudia Firląg | Katarzyna Beksa | Zuzanna Bordzicka | Christian Goltz | Paweł Bujnowski | Piotr Andruszkiewicz
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents a system used for SemEval-2021 Task 5: Toxic Spans Detection. Our system is an ensemble of BERT-based models for binary word classification, trained on a dataset extended by toxic comments modified and generated by two language models. For the toxic word classification, the prediction threshold value was optimized separately for every comment, in order to maximize the expected F1 value.

2019

pdf bib
WUT at SemEval-2019 Task 9: Domain-Adversarial Neural Networks for Domain Adaptation in Suggestion Mining
Mateusz Klimaszewski | Piotr Andruszkiewicz
Proceedings of the 13th International Workshop on Semantic Evaluation

We present a system for cross-domain suggestion mining, prepared for the SemEval-2019 Task 9: Suggestion Mining from Online Reviews and Forums (Subtask B). Our submitted solution for this text classification problem explores the idea of treating different suggestions’ sources as one of the settings of Transfer Learning - Domain Adaptation. Our experiments show that without any labeled target domain examples during training time, we are capable of proposing a system, reaching up to 0.778 in terms of F1 score on test dataset, based on Target Preserving Domain Adversarial Neural Networks.

2018

pdf bib
Annotated Corpus of Scientific Conference’s Homepages for Information Extraction
Piotr Andruszkiewicz | Rafał Hazan
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2016

pdf bib
Samsung Poland NLP Team at SemEval-2016 Task 1: Necessity for diversity; combining recursive autoencoders, WordNet and ensemble methods to measure semantic similarity.
Barbara Rychalska | Katarzyna Pakulska | Krystyna Chodorowska | Wojciech Walczak | Piotr Andruszkiewicz
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)