Piyawat Lertvittayakumjorn


pdf bib
GrASP: A Library for Extracting and Exploring Human-Interpretable Textual Patterns
Piyawat Lertvittayakumjorn | Leshem Choshen | Eyal Shnarch | Francesca Toni
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Data exploration is an important step of every data science and machine learning project, including those involving textual data. We provide a novel language tool, in the form of a publicly available Python library for extracting patterns from textual data. The library integrates a first public implementation of the existing GrASP algorithm. It allows users to extract patterns using a number of general-purpose built-in linguistic attributes (such as hypernyms, part-of-speech tags, and syntactic dependency tags), as envisaged for the original algorithm, as well as domain-specific custom attributes which can be incorporated into the library by implementing two functions. The library is equipped with a web-based interface empowering human users to conveniently explore data via the extracted patterns, using complementary pattern-centric and example-centric views: the former includes a reading in natural language and statistics of each extracted pattern; the latter shows applications of each extracted pattern to training examples. We demonstrate the usefulness of the library in classification (spam detection and argument mining), model analysis (machine translation), and artifact discovery in datasets (SNLI and 20Newsgroups).

pdf bib
Findings of the WMT 2022 Shared Task on Quality Estimation
Chrysoula Zerva | Frédéric Blain | Ricardo Rei | Piyawat Lertvittayakumjorn | José G. C. de Souza | Steffen Eger | Diptesh Kanojia | Duarte Alves | Constantin Orăsan | Marina Fomicheva | André F. T. Martins | Lucia Specia
Proceedings of the Seventh Conference on Machine Translation (WMT)

We report the results of the WMT 2022 shared task on Quality Estimation, in which the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels, without access to reference translations. This edition introduces a few novel aspects and extensions that aim to enable more fine-grained, and explainable quality estimation approaches. We introduce an updated quality annotation scheme using Multidimensional Quality Metrics to obtain sentence- and word-level quality scores for three language pairs. We also extend the Direct Assessments and post-edit data (MLQE-PE) to new language pairs: we present a novel and large dataset on English-Marathi, as well as a zero-shot test set on English-Yoruba. Further, we include an explainability sub-task for all language pairs and present a new format of a critical error detection task for two new language pairs. Participants from 11 different teams submitted altogether 991 systems to different task variants and language pairs.


pdf bib
Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems
Yang Gao | Steffen Eger | Wei Zhao | Piyawat Lertvittayakumjorn | Marina Fomicheva
Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems

pdf bib
The Eval4NLP Shared Task on Explainable Quality Estimation: Overview and Results
Marina Fomicheva | Piyawat Lertvittayakumjorn | Wei Zhao | Steffen Eger | Yang Gao
Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems

In this paper, we introduce the Eval4NLP-2021 shared task on explainable quality estimation. Given a source-translation pair, this shared task requires not only to provide a sentence-level score indicating the overall quality of the translation, but also to explain this score by identifying the words that negatively impact translation quality. We present the data, annotation guidelines and evaluation setup of the shared task, describe the six participating systems, and analyze the results. To the best of our knowledge, this is the first shared task on explainable NLP evaluation metrics. Datasets and results are available at https://github.com/eval4nlp/SharedTask2021.

pdf bib
Explanation-Based Human Debugging of NLP Models: A Survey
Piyawat Lertvittayakumjorn | Francesca Toni
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Debugging a machine learning model is hard since the bug usually involves the training data and the learning process. This becomes even harder for an opaque deep learning model if we have no clue about how the model actually works. In this survey, we review papers that exploit explanations to enable humans to give feedback and debug NLP models. We call this problem explanation-based human debugging (EBHD). In particular, we categorize and discuss existing work along three dimensions of EBHD (the bug context, the workflow, and the experimental setting), compile findings on how EBHD components affect the feedback providers, and highlight open problems that could be future research directions.

pdf bib
HILDIF: Interactive Debugging of NLI Models Using Influence Functions
Hugo Zylberajch | Piyawat Lertvittayakumjorn | Francesca Toni
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing

Biases and artifacts in training data can cause unwelcome behavior in text classifiers (such as shallow pattern matching), leading to lack of generalizability. One solution to this problem is to include users in the loop and leverage their feedback to improve models. We propose a novel explanatory debugging pipeline called HILDIF, enabling humans to improve deep text classifiers using influence functions as an explanation method. We experiment on the Natural Language Inference (NLI) task, showing that HILDIF can effectively alleviate artifact problems in fine-tuned BERT models and result in increased model generalizability.

pdf bib
Rational LAMOL: A Rationale-based Lifelong Learning Framework
Kasidis Kanwatchara | Thanapapas Horsuwan | Piyawat Lertvittayakumjorn | Boonserm Kijsirikul | Peerapon Vateekul
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Lifelong learning (LL) aims to train a neural network on a stream of tasks while retaining knowledge from previous tasks. However, many prior attempts in NLP still suffer from the catastrophic forgetting issue, where the model completely forgets what it just learned in the previous tasks. In this paper, we introduce Rational LAMOL, a novel end-to-end LL framework for language models. In order to alleviate catastrophic forgetting, Rational LAMOL enhances LAMOL, a recent LL model, by applying critical freezing guided by human rationales. When the human rationales are not available, we propose exploiting unsupervised generated rationales as substitutions. In the experiment, we tested Rational LAMOL on permutations of three datasets from the ERASER benchmark. The results show that our proposed framework outperformed vanilla LAMOL on most permutations. Furthermore, unsupervised rationale generation was able to consistently improve the overall LL performance from the baseline without relying on human-annotated rationales.

pdf bib
Supporting Complaints Investigation for Nursing and Midwifery Regulatory Agencies
Piyawat Lertvittayakumjorn | Ivan Petej | Yang Gao | Yamuna Krishnamurthy | Anna Van Der Gaag | Robert Jago | Kostas Stathis
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Health professional regulators aim to protect the health and well-being of patients and the public by setting standards for scrutinising and overseeing the training and conduct of health and care professionals. A major task of such regulators is the investigation of complaints against practitioners. However, processing a complaint often lasts several months and is particularly costly. Hence, we worked with international regulators from different countries (the UK, US and Australia), to develop the first decision support tool that aims to help such regulators process complaints more efficiently. Our system uses state-of-the-art machine learning and natural language processing techniques to process complaints and predict their risk level. Our tool also provides additional useful information including explanations, to help the regulatory staff interpret the prediction results, and similar past cases as well as non-compliance to regulations, to support the decision making.

pdf bib
ESRA: Explainable Scientific Research Assistant
Pollawat Hongwimol | Peeranuth Kehasukcharoen | Pasit Laohawarutchai | Piyawat Lertvittayakumjorn | Aik Beng Ng | Zhangsheng Lai | Timothy Liu | Peerapon Vateekul
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

We introduce Explainable Scientific Research Assistant (ESRA), a literature discovery platform that augments search results with relevant details and explanations, aiding users in understanding more about their queries and the returned papers beyond existing literature search systems. Enabled by a knowledge graph we extracted from abstracts of 23k papers on the arXiv’s cs.CL category, ESRA provides three main features: explanation (for why a paper is returned to the user), list of facts (that are relevant to the query), and graph visualization (drawing connections between the query and each paper with surrounding related entities). The experimental results with humans involved show that ESRA can accelerate the users’ search process with paper explanations and helps them better explore the landscape of the topics of interest by exploiting the underlying knowledge graph. We provide the ESRA web application at http://esra.cp.eng.chula.ac.th/.

pdf bib
Knowledge-Driven Slot Constraints for Goal-Oriented Dialogue Systems
Piyawat Lertvittayakumjorn | Daniele Bonadiman | Saab Mansour
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In goal-oriented dialogue systems, users provide information through slot values to achieve specific goals. Practically, some combinations of slot values can be invalid according to external knowledge. For example, a combination of “cheese pizza” (a menu item) and “oreo cookies” (a topping) from an input utterance “Can I order a cheese pizza with oreo cookies on top?” exemplifies such invalid combinations according to the menu of a restaurant business. Traditional dialogue systems allow execution of validation rules as a post-processing step after slots have been filled which can lead to error accumulation. In this paper, we formalize knowledge-driven slot constraints and present a new task of constraint violation detection accompanied with benchmarking data. Then, we propose methods to integrate the external knowledge into the system and model constraint violation detection as an end-to-end classification task and compare it to the traditional rule-based pipeline approach. Experiments on two domains of the MultiDoGO dataset reveal challenges of constraint violation detection and sets the stage for future work and improvements.


pdf bib
FIND: Human-in-the-Loop Debugging Deep Text Classifiers
Piyawat Lertvittayakumjorn | Lucia Specia | Francesca Toni
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Since obtaining a perfect training dataset (i.e., a dataset which is considerably large, unbiased, and well-representative of unseen cases) is hardly possible, many real-world text classifiers are trained on the available, yet imperfect, datasets. These classifiers are thus likely to have undesirable properties. For instance, they may have biases against some sub-populations or may not work effectively in the wild due to overfitting. In this paper, we propose FIND – a framework which enables humans to debug deep learning text classifiers by disabling irrelevant hidden features. Experiments show that by using FIND, humans can improve CNN text classifiers which were trained under different types of imperfect datasets (including datasets with biases and datasets with dissimilar train-test distributions).


pdf bib
Integrating Semantic Knowledge to Tackle Zero-shot Text Classification
Jingqing Zhang | Piyawat Lertvittayakumjorn | Yike Guo
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Insufficient or even unavailable training data of emerging classes is a big challenge of many classification tasks, including text classification. Recognising text documents of classes that have never been seen in the learning stage, so-called zero-shot text classification, is therefore difficult and only limited previous works tackled this problem. In this paper, we propose a two-phase framework together with data augmentation and feature augmentation to solve this problem. Four kinds of semantic knowledge (word embeddings, class descriptions, class hierarchy, and a general knowledge graph) are incorporated into the proposed framework to deal with instances of unseen classes effectively. Experimental results show that each and the combination of the two phases achieve the best overall accuracy compared with baselines and recent approaches in classifying real-world texts under the zero-shot scenario.

pdf bib
Human-grounded Evaluations of Explanation Methods for Text Classification
Piyawat Lertvittayakumjorn | Francesca Toni
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Due to the black-box nature of deep learning models, methods for explaining the models’ results are crucial to gain trust from humans and support collaboration between AIs and humans. In this paper, we consider several model-agnostic and model-specific explanation methods for CNNs for text classification and conduct three human-grounded evaluations, focusing on different purposes of explanations: (1) revealing model behavior, (2) justifying model predictions, and (3) helping humans investigate uncertain predictions. The results highlight dissimilar qualities of the various explanation methods we consider and show the degree to which these methods could serve for each purpose.