Nearest neighbor machine translation (kNN-MT), which interpolates target token probabilities with estimates derived from additional examples, has achieved significant improvements and attracted extensive interest in recent years. However, existing research does not explicitly consider the source context when retrieving similar examples, potentially leading to suboptimal performance. To address this, we comprehensively revisit the role of source context and propose a simple and effective method for improving neural machine translation via source context enhancement, demonstrating its crucial role in both retrieving superior examples and determining more suitable interpolation coefficients. Furthermore, we reveal that the probability estimation can be further optimized by incorporating a source-aware distance calibration module. Comprehensive experiments show that our proposed approach can be seamlessly integrated with representative kNN-MT baselines, resulting in substantial improvements over these strong baselines across a number of settings and domains. Remarkably, these improvements can reach up to 1.6 BLEU points.
Knowledge graph question answering (KGQA) based on information retrieval aims to answer a question by retrieving answer from a large-scale knowledge graph. Most existing methods first roughly retrieve the knowledge subgraphs (KSG) that may contain candidate answer, and then search for the exact answer in the KSG. However, the KSG may contain thousands of candidate nodes since the knowledge graph involved in querying is often of large scale, thus decreasing the performance of answer selection. To tackle this problem, we first propose to partition the retrieved KSG to several smaller sub-KSGs via a new subgraph partition algorithm and then present a graph-augmented learning to rank model to select the top-ranked sub-KSGs from them. Our proposed model combines a novel subgraph matching networks to capture global interactions in both question and subgraphs and an Enhanced Bilateral Multi-Perspective Matching model to capture local interactions. Finally, we apply an answer selection model on the full KSG and the top-ranked sub-KSGs respectively to validate the effectiveness of our proposed graph-augmented learning to rank method. The experimental results on multiple benchmark datasets have demonstrated the effectiveness of our approach.
Event detection, which aims to identify instances of specific event types from pieces of text, is a fundamental task in information extraction. Most existing approaches leverage syntactic knowledge with a set of syntactic relations to enhance event detection. However, a side effect of these syntactic-based approaches is that they may confuse different syntactic relations and tend to introduce redundant or noisy information, which may lead to performance degradation. To this end, we propose a simple yet effective model named DualGAT (Dual Relational Graph Attention Networks), which exploits the complementary nature of syntactic and semantic relations to alleviate the problem. Specifically, we first construct a dual relational graph that both aggregates syntactic and semantic relations to the key nodes in the graph, so that event-relevant information can be comprehensively captured from multiple perspectives (i.e., syntactic and semantic views). We then adopt augmented relational graph attention networks to encode the graph and optimize its attention weights by introducing contextual information, which further improves the performance of event detection. Extensive experiments conducted on the standard ACE2005 benchmark dataset indicate that our method significantly outperforms the state-of-the-art methods and verifies the superiority of DualGAT over existing syntactic-based methods.