Existing approaches on zero-shot event detection usually train models on datasets annotated with known event types, and prompt them with unseen event definitions. These approaches yield sporadic successes, yet generally fall short of expectations.In this work, we aim to improve zero-shot event detection by training models to better follow event definitions. We hypothesize that a diverse set of event types and definitions are the key for models to learn to follow event definitions while existing event extraction datasets focus on annotating many high-quality examples for a few event types. To verify our hypothesis, we construct an automatically generated Diverse Event Definition (DivED) dataset and conduct comparative studies. Our experiments reveal that a large number of event types (200) and diverse event definitions can significantly boost event extraction performance; on the other hand, the performance does not scale with over ten examples per event type.Beyond scaling, we incorporate event ontology information and hard-negative samples during training, further boosting the performance. Based on these findings, we fine-tuned a LLaMA-2-7B model on our DivED dataset, yielding performance that surpasses SOTA large language models like GPT-3.5 across three open benchmarks on zero-shot event detection.
Recent works on instruction tuning (IT) have achieved great performance with zero-shot generalizability to unseen tasks. With additional context (e.g., task definition, examples) provided to models for fine-tuning, they achieved much higher performance than untuned models. Despite impressive performance gains, what models learn from IT remains understudied. In this work, we analyze how models utilize instructions during IT by comparing model training with altered vs. original instructions. Specifically, we create simplified task definitions by removing all semantic components and only leaving the output space information, and delusive examples that contain incorrect input-output mapping. Our experiments show that models trained on simplified task definition or delusive examples can achieve comparable performance to the ones trained on the original instructions and examples. Furthermore, we introduce a random baseline to perform zeroshot classification tasks, and find it achieves similar performance (42.6% exact-match) as IT does (43% exact-match) in low resource setting, while both methods outperform naive T5 significantly (30% per exact-match). Our analysis provides evidence that the impressive performance gain of current IT models can come from picking up superficial patterns, such as learning the output format and guessing. Our study highlights the urgent need for more reliable IT methods and evaluation.
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions. However, how to select new tasks to improve the performance and generalizability of IT models remains an open question. Training on all existing tasks is impractical due to prohibiting computation requirements, and randomly selecting tasks can lead to suboptimal performance. In this work, we propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks. We represent the informativeness of new tasks with the disagreement of the current model outputs over perturbed prompts. Our experiments on NIV2 and Self-Instruct datasets demonstrate that our method consistently outperforms other baseline strategies for task selection, achieving better out-of-distribution generalization with fewer training tasks. Additionally, we introduce a task map that categorizes and diagnoses tasks based on prompt uncertainty and prediction probability. We discover that training on ambiguous (prompt-uncertain) tasks improves generalization while training on difficult (prompt-certain and low-probability) tasks offers no benefit, underscoring the importance of task selection for instruction tuning.
An approach to improve question-answering performance is to retrieve accompanying information that contains factual evidence matching the question. These retrieved documents are then fed into a reader that generates an answer. A commonly applied retriever is dense passage retrieval. In this retriever, the output of a transformer neural network is used to query a knowledge database for matching documents. Inspired by the observation that different layers of a transformer network provide rich representations with different levels of abstraction, we hypothesize that useful queries can be generated not only at the output layer, but at every layer of a transformer network, and that the hidden representations of different layers may combine to improve the fetched documents for reader performance. Our novel approach integrates retrieval into each layer of a transformer network, exploiting the hierarchical representations of the input question. We show that our technique outperforms prior work on downstream tasks such as question answering, demonstrating the effectiveness of our approach.
Multi-task auxiliary learning utilizes a set of relevant auxiliary tasks to improve the performance of a primary task. A common usage is to manually select multiple auxiliary tasks for multi-task learning on all data, which raises two issues: (1) selecting beneficial auxiliary tasks for a primary task is nontrivial; (2) when the auxiliary datasets are large, training on all data becomes time-expensive and impractical. Therefore, this paper focuses on addressing these problems and proposes a time-efficient sampling method to select the data that is most relevant to the primary task. The proposed method allows us to only train on the most beneficial sub-datasets from the auxiliary tasks, achieving efficient multi-task auxiliary learning. The experiments on three benchmark datasets (RTE, MRPC, STS-B) show that our method significantly outperforms random sampling and ST-DNN. Also, by applying our method, the model can surpass fully-trained MT-DNN on RTE, MRPC, STS-B, using only 50%, 66%, and 1% of data, respectively.
Extracting rationales can help human understand which information the model utilizes and how it makes the prediction towards better interpretability. However, annotating rationales requires much effort and only few datasets contain such labeled rationales, making supervised learning for rationalization difficult. In this paper, we propose a novel approach that leverages the benefits of both multi-task learning and transfer learning for generating rationales through question answering in a zero-shot fashion. For two benchmark rationalization datasets, the proposed method achieves comparable or even better performance of rationalization without any supervised signal, demonstrating the great potential of zero-shot rationalization for better interpretability.