Ponrawee Prasertsom
2024
The Thai Discourse Treebank: Annotating and Classifying Thai Discourse Connectives
Ponrawee Prasertsom
|
Apiwat Jaroonpol
|
Attapol T. Rutherford
Transactions of the Association for Computational Linguistics, Volume 12
Discourse analysis is a highly applicable area of natural language processing. In English and other languages, resources for discourse-based tasks are widely available. Thai, however, has hitherto lacked such resources. We present the Thai Discourse Treebank, the first, large Thai corpus annotated in the style of the Penn Discourse Treebank. The resulting corpus has over 10,000 sentences and 18,000 instances of connectives in 33 different relations. We release the corpus alongside our list of 148 potentially polysemous discourse connectives with a total of 340 form-sense pairs and their classification criteria to facilitate future research. We also develop models for connective identification and classification tasks. Our best models achieve an F1 of 0.96 in the identification task and 0.46 on the sense classification task. Our results serve as benchmarks for future models for Thai discourse tasks.
2020
Syllable-based Neural Thai Word Segmentation
Pattarawat Chormai
|
Ponrawee Prasertsom
|
Jin Cheevaprawatdomrong
|
Attapol Rutherford
Proceedings of the 28th International Conference on Computational Linguistics
Word segmentation is a challenging pre-processing step for Thai Natural Language Processing due to the lack of explicit word boundaries. The previous systems rely on powerful neural network architecture alone and ignore linguistic substructures of Thai words. We utilize the linguistic observation that Thai strings can be segmented into syllables, which should narrow down the search space for the word boundaries and provide helpful features. Here, we propose a neural Thai Word Segmenter that uses syllable embeddings to capture linguistic constraints and uses dilated CNN filters to capture the environment of each character. Within this goal, we develop the first ML-based Thai orthographical syllable segmenter, which yields syllable embeddings to be used as features by the word segmenter. Our word segmentation system outperforms the previous state-of-the-art system in both speed and accuracy on both in-domain and out-domain datasets.