Pradeep Murukannaiah


pdf bib
Do Differences in Values Influence Disagreements in Online Discussions?
Michiel van der Meer | Piek Vossen | Catholijn Jonker | Pradeep Murukannaiah
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.


pdf bib
Cross-Domain Classification of Moral Values
Enrico Liscio | Alin Dondera | Andrei Geadau | Catholijn Jonker | Pradeep Murukannaiah
Findings of the Association for Computational Linguistics: NAACL 2022

Moral values influence how we interpret and act upon the information we receive. Identifying human moral values is essential for artificially intelligent agents to co-exist with humans. Recent progress in natural language processing allows the identification of moral values in textual discourse. However, domain-specific moral rhetoric poses challenges for transferring knowledge from one domain to another. We provide the first extensive investigation on the effects of cross-domain classification of moral values from text. We compare a state-of-the-art deep learning model (BERT) in seven domains and four cross-domain settings. We show that a value classifier can generalize and transfer knowledge to novel domains, but it can introduce catastrophic forgetting. We also highlight the typical classification errors in cross-domain value classification and compare the model predictions to the annotators agreement. Our results provide insights to computer and social scientists that seek to identify moral rhetoric specific to a domain of discourse.


pdf bib
A dataset for identifying actionable feedback in collaborative software development
Benjamin S. Meyers | Nuthan Munaiah | Emily Prud’hommeaux | Andrew Meneely | Josephine Wolff | Cecilia Ovesdotter Alm | Pradeep Murukannaiah
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Software developers and testers have long struggled with how to elicit proactive responses from their coworkers when reviewing code for security vulnerabilities and errors. For a code review to be successful, it must not only identify potential problems but also elicit an active response from the colleague responsible for modifying the code. To understand the factors that contribute to this outcome, we analyze a novel dataset of more than one million code reviews for the Google Chromium project, from which we extract linguistic features of feedback that elicited responsive actions from coworkers. Using a manually-labeled subset of reviewer comments, we trained a highly accurate classifier to identify acted-upon comments (AUC = 0.85). Our results demonstrate the utility of our dataset, the feasibility of using NLP for this new task, and the potential of NLP to improve our understanding of how communications between colleagues can be authored to elicit positive, proactive responses.