Diagnostic coding, or ICD coding, is the task of assigning diagnosis codes defined by the ICD (International Classification of Diseases) standard to patient visits based on clinical notes. The current process of manual ICD coding is time-consuming and often error-prone, which suggests the need for automatic ICD coding. However, despite the long history of automatic ICD coding, there have been no standardized frameworks for benchmarking ICD coding models. We open-source an easy-to-use tool named AnEMIC, which provides a streamlined pipeline for preprocessing, training, and evaluating for automatic ICD coding. We correct errors in preprocessing by existing works, and provide key models and weights trained on the correctly preprocessed datasets. We also provide an interactive demo performing real-time inference from custom inputs, and visualizations drawn from explainable AI to analyze the models. We hope the framework helps move the research of ICD coding forward and helps professionals explore the potential of ICD coding. The framework and the associated code are available here.
Compositional generalization is the ability to generalize systematically to a new data distribution by combining known components. Although humans seem to have a great ability to generalize compositionally, state-of-the-art neural models struggle to do so. In this work, we study compositional generalization in classification tasks and present two main contributions. First, we study ways to convert a natural language sequence-to-sequence dataset to a classification dataset that also requires compositional generalization. Second, we show that providing structural hints (specifically, providing parse trees and entity links as attention masks for a Transformer model) helps compositional generalization.
While the celebrated Word2Vec technique yields semantically rich representations for individual words, there has been relatively less success in extending to generate unsupervised sentences or documents embeddings. Recent work has demonstrated that a distance measure between documents called Word Mover’s Distance (WMD) that aligns semantically similar words, yields unprecedented KNN classification accuracy. However, WMD is expensive to compute, and it is hard to extend its use beyond a KNN classifier. In this paper, we propose the Word Mover’s Embedding (WME), a novel approach to building an unsupervised document (sentence) embedding from pre-trained word embeddings. In our experiments on 9 benchmark text classification datasets and 22 textual similarity tasks, the proposed technique consistently matches or outperforms state-of-the-art techniques, with significantly higher accuracy on problems of short length.