Prakamya Mishra
2024
SYNFAC-EDIT: Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization
Prakamya Mishra
|
Zonghai Yao
|
Parth Vashisht
|
Feiyun Ouyang
|
Beining Wang
|
Vidhi Dhaval Mody
|
Hong Yu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) such as GPT & Llama have demonstrated significant achievements in summarization tasks but struggle with factual inaccuracies, a critical issue in clinical NLP applications where errors could lead to serious consequences. To counter the high costs and limited availability of expert-annotated data for factual alignment, this study introduces an innovative pipeline that utilizes >100B parameter GPT variants like GPT-3.5 & GPT-4 to act as synthetic experts to generate high-quality synthetics feedback aimed at enhancing factual consistency in clinical note summarization. Our research primarily focuses on edit feedback generated by these synthetic feedback experts without additional human annotations, mirroring and optimizing the practical scenario in which medical professionals refine AI system outputs. Although such 100B+ parameter GPT variants have proven to demonstrate expertise in various clinical NLP tasks, such as the Medical Licensing Examination, there is scant research on their capacity to act as synthetic feedback experts and deliver expert-level edit feedback for improving the generation quality of weaker (<10B parameter) LLMs like GPT-2 (1.5B) & Llama 2 (7B) in clinical domain. So in this work, we leverage 100B+ GPT variants to act as synthetic feedback experts offering expert-level edit feedback, that is used to reduce hallucinations and align weaker (<10B parameter) LLMs with medical facts using two distinct alignment algorithms (DPO & SALT), endeavoring to narrow the divide between AI-generated content and factual accuracy. This highlights the substantial potential of LLM-based synthetic edits in enhancing the alignment of clinical factuality.
Clustering-based Sampling for Few-Shot Cross-Domain Keyphrase Extraction
Prakamya Mishra
|
Lincy Pattanaik
|
Arunima Sundar
|
Nishant Yadav
|
Mayank Kulkarni
Findings of the Association for Computational Linguistics: EACL 2024
Keyphrase extraction is the task of identifying a set of keyphrases present in a document that captures its most salient topics. Scientific domain-specific pre-training has led to achieving state-of-the-art keyphrase extraction performance with a majority of benchmarks being within the domain. In this work, we explore how to effectively enable the cross-domain generalization capabilities of such models without requiring the same scale of data. We primarily focus on the few-shot setting in non-scientific domain datasets such as OpenKP from the Web domain & StackEx from the StackExchange forum. We propose to leverage topic information intrinsically available in the data, to build a novel clustering-based sampling approach that facilitates selecting a few samples to label from the target domain facilitating building robust and performant models. This approach leads to large gains in performance of up to 26.35 points in F1 when compared to selecting few-shot samples uniformly at random. We also explore the setting where we have access to labeled data from the model’s pretraining domain corpora and perform gradual training which involves slowly folding in target domain data to the source domain data. Here we demonstrate further improvements in the model performance by up to 12.76 F1 points.
Search
Co-authors
- Zonghai Yao 1
- Parth Vashisht 1
- Feiyun Ouyang 1
- Beining Wang 1
- Vidhi Dhaval Mody 1
- show all...