Prasadith Kirinde Gamaarachchige
2024
Explainable Depression Detection Using Large Language Models on Social Media Data
Yuxi Wang
|
Diana Inkpen
|
Prasadith Kirinde Gamaarachchige
Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024)
Due to the rapid growth of user interaction on different social media platforms, publicly available social media data has increased substantially. The sheer amount of data and level of personal information being shared on such platforms has made analyzing textual information to predict mental disorders such as depression a reliable preliminary step when it comes to psychometrics. In this study, we first proposed a system to search for texts that are related to depression symptoms from the Beck’s Depression Inventory (BDI) questionnaire, and providing a ranking for further investigation in a second step. Then, in this second step, we address the even more challenging task of automatic depression level detection, using writings and voluntary answers provided by users on Reddit. Several Large Language Models (LLMs) were applied in experiments. Our proposed system based on LLMs can generate both predictions and explanations for each question. By combining two LLMs for different questions, we achieved better performance on three of four metrics compared to the state-of-the-art and remained competitive on the one remaining metric. In addition, our system is explainable on two levels: first, knowing the answers to the BDI questions provides clues about the possible symptoms that could lead to a clinical diagnosis of depression; second, our system can explain the predicted answer for each question.
2022
Multi-Task Learning to Capture Changes in Mood Over Time
Prasadith Kirinde Gamaarachchige
|
Ahmed Husseini Orabi
|
Mahmoud Husseini Orabi
|
Diana Inkpen
Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology
This paper investigates the impact of using Multi-Task Learning (MTL) to predict mood changes over time for each individual (social media user). The presented models were developed as a part of the Computational Linguistics and Clinical Psychology (CLPsych) 2022 shared task. Given the limited number of Reddit social media users, as well as their posts, we decided to experiment with different multi-task learning architectures to identify to what extent knowledge can be shared among similar tasks. Due to class imbalance at both post and user levels and to accommodate task alignment, we randomly sampled an equal number of instances from the respective classes and performed ensemble learning to reduce prediction variance. Faced with several constraints, we managed to produce competitive results that could provide insights into the use of multi-task learning to identify mood changes over time and suicide ideation risk.
2019
Multi-Task, Multi-Channel, Multi-Input Learning for Mental Illness Detection using Social Media Text
Prasadith Kirinde Gamaarachchige
|
Diana Inkpen
Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)
We investigate the impact of using emotional patterns identified by the clinical practitioners and computational linguists to enhance the prediction capabilities of a mental illness detection (in our case depression and post-traumatic stress disorder) model built using a deep neural network architecture. Over the years, deep learning methods have been successfully used in natural language processing tasks, including a few in the domain of mental illness and suicide ideation detection. We illustrate the effectiveness of using multi-task learning with a multi-channel convolutional neural network as the shared representation and use additional inputs identified by researchers as indicatives in detecting mental disorders to enhance the model predictability. Given the limited amount of unstructured data available for training, we managed to obtain a task-specific AUC higher than 0.90. In comparison to methods such as multi-class classification, we identified multi-task learning with multi-channel convolution neural network and multiple-inputs to be effective in detecting mental disorders.
Search