Prashant Kodali


2023

pdf bib
X-RiSAWOZ: High-Quality End-to-End Multilingual Dialogue Datasets and Few-shot Agents
Mehrad Moradshahi | Tianhao Shen | Kalika Bali | Monojit Choudhury | Gael de Chalendar | Anmol Goel | Sungkyun Kim | Prashant Kodali | Ponnurangam Kumaraguru | Nasredine Semmar | Sina Semnani | Jiwon Seo | Vivek Seshadri | Manish Shrivastava | Michael Sun | Aditya Yadavalli | Chaobin You | Deyi Xiong | Monica Lam
Findings of the Association for Computational Linguistics: ACL 2023

Task-oriented dialogue research has mainly focused on a few popular languages like English and Chinese, due to the high dataset creation cost for a new language. To reduce the cost, we apply manual editing to automatically translated data. We create a new multilingual benchmark, X-RiSAWOZ, by translating the Chinese RiSAWOZ to 4 languages: English, French, Hindi, Korean; and a code-mixed English-Hindi language.X-RiSAWOZ has more than 18,000 human-verified dialogue utterances for each language, and unlike most multilingual prior work, is an end-to-end dataset for building fully-functioning agents. The many difficulties we encountered in creating X-RiSAWOZ led us to develop a toolset to accelerate the post-editing of a new language dataset after translation. This toolset improves machine translation with a hybrid entity alignment technique that combines neural with dictionary-based methods, along with many automated and semi-automated validation checks. We establish strong baselines for X-RiSAWOZ by training dialogue agents in the zero- and few-shot settings where limited gold data is available in the target language. Our results suggest that our translation and post-editing methodology and toolset can be used to create new high-quality multilingual dialogue agents cost-effectively. Our dataset, code, and toolkit are released open-source.

pdf bib
PrecogIIITH@WASSA2023: Emotion Detection for Urdu-English Code-mixed Text
Bhaskara Hanuma Vedula | Prashant Kodali | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Code-mixing refers to the phenomenon of using two or more languages interchangeably within a speech or discourse context. This practice is particularly prevalent on social media platforms, and determining the embedded affects in a code-mixed sentence remains as a challenging problem. In this submission we describe our system for WASSA 2023 Shared Task on Emotion Detection in English-Urdu code-mixed text. In our system we implement a multiclass emotion detection model with label space of 11 emotions. Samples are code-mixed English-Urdu text, where Urdu is written in romanised form. Our submission is limited to one of the subtasks - Multi Class classification and we leverage transformer-based Multilingual Large Language Models (MLLMs), XLM-RoBERTa and Indic-BERT. We fine-tune MLLMs on the released data splits, with and without pre-processing steps (translation to english), for classifying texts into the appropriate emotion category. Our methods did not surpass the baseline, and our submission is ranked sixth overall.

2022

pdf bib
PreCogIIITH at HinglishEval : Leveraging Code-Mixing Metrics & Language Model Embeddings To Estimate Code-Mix Quality
Prashant Kodali | Tanmay Sachan | Akshay Goindani | Anmol Goel | Naman Ahuja | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the 15th International Conference on Natural Language Generation: Generation Challenges

Code-Mixing is a phenomenon of mixing two or more languages in a speech event and is prevalent in multilingual societies. Given the low-resource nature of Code-Mixing, machine generation of code-mixed text is a prevalent approach for data augmentation. However, evaluating the quality of such machine gen- erated code-mixed text is an open problem. In our submission to HinglishEval, a shared- task collocated with INLG2022, we attempt to build models factors that impact the quality of synthetically generated code-mix text by pre- dicting ratings for code-mix quality. Hingli- shEval Shared Task consists of two sub-tasks - a) Quality rating prediction); b) Disagree- ment prediction. We leverage popular code- mixed metrics and embeddings of multilin- gual large language models (MLLMs) as fea- tures, and train task specific MLP regression models. Our approach could not beat the baseline results. However, for Subtask-A our team ranked a close second on F-1 and Co- hen’s Kappa Score measures and first for Mean Squared Error measure. For Subtask-B our ap- proach ranked third for F1 score, and first for Mean Squared Error measure. Code of our submission can be accessed here.

pdf bib
SyMCoM - Syntactic Measure of Code Mixing A Study Of English-Hindi Code-Mixing
Prashant Kodali | Anmol Goel | Monojit Choudhury | Manish Shrivastava | Ponnurangam Kumaraguru
Findings of the Association for Computational Linguistics: ACL 2022

Code mixing is the linguistic phenomenon where bilingual speakers tend to switch between two or more languages in conversations. Recent work on code-mixing in computational settings has leveraged social media code mixed texts to train NLP models. For capturing the variety of code mixing in, and across corpus, Language ID (LID) tags based measures (CMI) have been proposed. Syntactical variety/patterns of code-mixing and their relationship vis-a-vis computational model’s performance is under explored. In this work, we investigate a collection of English(en)-Hindi(hi) code-mixed datasets from a syntactic lens to propose, SyMCoM, an indicator of syntactic variety in code-mixed text, with intuitive theoretical bounds. We train SoTA en-hi PoS tagger, accuracy of 93.4%, to reliably compute PoS tags on a corpus, and demonstrate the utility of SyMCoM by applying it on various syntactical categories on a collection of datasets, and compare datasets using the measure.

pdf bib
HashSet - A Dataset For Hashtag Segmentation
Prashant Kodali | Akshala Bhatnagar | Naman Ahuja | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Hashtag segmentation is the task of breaking a hashtag into its constituent tokens. Hashtags often encode the essence of user-generated posts, along with information like topic and sentiment, which are useful in downstream tasks. Hashtags prioritize brevity and are written in unique ways - transliterating and mixing languages, spelling variations, creative named entities. Benchmark datasets used for the hashtag segmentation task - STAN, BOUN - are small and extracted from a single set of tweets. However, datasets should reflect the variations in writing styles of hashtags and account for domain and language specificity, failing which the results will misrepresent model performance. We argue that model performance should be assessed on a wider variety of hashtags, and datasets should be carefully curated. To this end, we propose HashSet, a dataset comprising of: a) 1.9k manually annotated dataset; b) 3.3M loosely supervised dataset. HashSet dataset is sampled from a different set of tweets when compared to existing datasets and provides an alternate distribution of hashtags to build and validate hashtag segmentation models. We analyze the performance of SOTA models for Hashtag Segmentation, and show that the proposed dataset provides an alternate set of hashtags to train and assess models.

2021

pdf bib
CoMeT: Towards Code-Mixed Translation Using Parallel Monolingual Sentences
Devansh Gautam | Prashant Kodali | Kshitij Gupta | Anmol Goel | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

Code-mixed languages are very popular in multilingual societies around the world, yet the resources lag behind to enable robust systems on such languages. A major contributing factor is the informal nature of these languages which makes it difficult to collect code-mixed data. In this paper, we propose our system for Task 1 of CACLS 2021 to generate a machine translation system for English to Hinglish in a supervised setting. Translating in the given direction can help expand the set of resources for several tasks by translating valuable datasets from high resource languages. We propose to use mBART, a pre-trained multilingual sequence-to-sequence model, and fully utilize the pre-training of the model by transliterating the roman Hindi words in the code-mixed sentences to Devanagri script. We evaluate how expanding the input by concatenating Hindi translations of the English sentences improves mBART’s performance. Our system gives a BLEU score of 12.22 on test set. Further, we perform a detailed error analysis of our proposed systems and explore the limitations of the provided dataset and metrics.