Priyansh Trivedi


2024

pdf bib
Au-delà de la performance des modèles : la prédiction de liens peut-elle enrichir des graphes lexico-sémantiques du français ?
Hee-Soo Choi | Priyansh Trivedi | Mathieu Constant | Karën Fort | Bruno Guillaume
Actes de la 31ème Conférence sur le Traitement Automatique des Langues Naturelles, volume 1 : articles longs et prises de position

Cet article présente une étude sur l’utilisation de modèles de prédiction de liens pour l’enrichissement de graphes lexico-sémantiques du français. Celle-ci porte sur deux graphes, RezoJDM16k et RL-fr et sept modèles de prédiction de liens. Nous avons étudié les prédictions du modèle le plus performant, afin d’extraire de potentiels nouveaux triplets en utilisant un score de confiance que nous avons évalué avec des annotations manuelles. Nos résultats mettent en évidence des avantages différentspour le graphe dense RezoJDM16k par rapport à RL-fr, plus clairsemé. Si l’ajout de nouveaux triplets à RezoJDM16k offre des avantages limités, RL-fr peut bénéficier substantiellement de notre approche.

pdf bib
Beyond Model Performance: Can Link Prediction Enrich French Lexical Graphs?
Hee-Soo Choi | Priyansh Trivedi | Mathieu Constant | Karen Fort | Bruno Guillaume
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper presents a resource-centric study of link prediction approaches over French lexical-semantic graphs. Our study incorporates two graphs, RezoJDM16k and RL-fr, and we evaluated seven link prediction models, with CompGCN-ConvE emerging as the best performer. We also conducted a qualitative analysis of the predictions using manual annotations. Based on this, we found that predictions with higher confidence scores were more valid for inclusion. Our findings highlight different benefits for the dense graph compared to the sparser graph RL-fr. While the addition of new triples to RezoJDM16k offers limited advantages, RL-fr can benefit substantially from our approach.

2022

pdf bib
Anaphora Resolution in Dialogue: System Description (CODI-CRAC 2022 Shared Task)
Tatiana Anikina | Natalia Skachkova | Joseph Renner | Priyansh Trivedi
Proceedings of the CODI-CRAC 2022 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue

We describe three models submitted for the CODI-CRAC 2022 shared task. To perform identity anaphora resolution, we test several combinations of the incremental clustering approach based on the Workspace Coreference System (WCS) with other coreference models. The best result is achieved by adding the “cluster merging” version of the coref-hoi model, which brings up to 10.33% improvement1 over vanilla WCS clustering. Discourse deixis resolution is implemented as multi-task learning: we combine the learning objective of coref-hoi with anaphor type classification. We adapt the higher-order resolution model introduced in Joshi et al. (2019) for bridging resolution given gold mentions and anaphors.

2021

pdf bib
An End-to-End Approach for Full Bridging Resolution
Joseph Renner | Priyansh Trivedi | Gaurav Maheshwari | Rémi Gilleron | Pascal Denis
Proceedings of the CODI-CRAC 2021 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue

In this article, we describe our submission to the CODI-CRAC 2021 Shared Task on Anaphora Resolution in Dialogues – Track BR (Gold). We demonstrate the performance of an end-to-end transformer-based higher-order coreference model finetuned for the task of full bridging. We find that while our approach is not effective at modeling the complexities of the task, it performs well on bridging resolution, suggesting a need for investigations into a robust anaphor identification model for future improvements.

2020

pdf bib
Message Passing for Hyper-Relational Knowledge Graphs
Mikhail Galkin | Priyansh Trivedi | Gaurav Maheshwari | Ricardo Usbeck | Jens Lehmann
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Hyper-relational knowledge graphs (KGs) (e.g., Wikidata) enable associating additional key-value pairs along with the main triple to disambiguate, or restrict the validity of a fact. In this work, we propose a message passing based graph encoder - StarE capable of modeling such hyper-relational KGs. Unlike existing approaches, StarE can encode an arbitrary number of additional information (qualifiers) along with the main triple while keeping the semantic roles of qualifiers and triples intact. We also demonstrate that existing benchmarks for evaluating link prediction (LP) performance on hyper-relational KGs suffer from fundamental flaws and thus develop a new Wikidata-based dataset - WD50K. Our experiments demonstrate that StarE based LP model outperforms existing approaches across multiple benchmarks. We also confirm that leveraging qualifiers is vital for link prediction with gains up to 25 MRR points compared to triple-based representations.