Priyanshu Priya


pdf bib
e-THERAPIST: I suggest you to cultivate a mindset of positivity and nurture uplifting thoughts
Kshitij Mishra | Priyanshu Priya | Manisha Burja | Asif Ekbal
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The shortage of therapists for mental health patients emphasizes the importance of globally accessible dialogue systems alleviating their issues. To have effective interpersonal psychotherapy, these systems must exhibit politeness and empathy when needed. However, these factors may vary as per the user’s gender, age, persona, and sentiment. Hence, in order to establish trust and provide a personalized cordial experience, it is essential that generated responses should be tailored to individual profiles and attributes. Focusing on this objective, we propose e-THERAPIST, a novel polite interpersonal psychotherapy dialogue system to address issues like depression, anxiety, schizophrenia, etc. We begin by curating a unique conversational dataset for psychotherapy, called PsyCon. It is annotated at two levels: (i) dialogue-level - including user’s profile information (gender, age, persona) and therapist’s psychotherapeutic approach; and (ii) utterance-level - encompassing user’s sentiment and therapist’s politeness, and interpersonal behaviour. Then, we devise a novel reward model to adapt correct polite interpersonal behaviour and use it to train e-THERAPIST on PsyCon employing NLPO loss. Our extensive empirical analysis validates the effectiveness of each component of the proposed e-THERAPIST demonstrating its potential impact in psychotherapy settings.

pdf bib
PAL to Lend a Helping Hand: Towards Building an Emotion Adaptive Polite and Empathetic Counseling Conversational Agent
Kshitij Mishra | Priyanshu Priya | Asif Ekbal
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The World Health Organization (WHO) has significantly emphasized the need for mental health care. The social stigma associated with mental illness prevents individuals from addressing their issues and getting assistance. In such a scenario, the relevance of online counseling has increased dramatically. The feelings and attitudes that a client and a counselor express towards each other result in a higher or lower counseling experience. A counselor should be friendly and gain clients’ trust to make them share their problems comfortably. Thus, it is essential for the counselor to adequately comprehend the client’s emotions and ensure client’s welfare, i.e. s/he should adapt and deal with the clients politely and empathetically to provide a pleasant, cordial and personalized experience. Motivated by this, in this work, we attempt to build a novel Polite and empAthetic counseLing conversational agent PAL to lay down the counseling support to substance addict and crime victims. To have client’s emotion-based polite and empathetic responses, two counseling datasets laying down the counseling support to substance addicts and crime victims are annotated. These annotated datasets are used to build PAL in a reinforcement learning framework. A novel reward function is formulated to ensure correct politeness and empathy preferences as per client’s emotions with naturalness and non-repetitiveness in responses. Thorough automatic and human evaluation showcase the usefulness and strength of the designed novel reward function. Our proposed system is scalable and can be easily modified with different modules of preference models as per need.

pdf bib
Mixing It Up: Inducing Empathy and Politeness using Multiple Behaviour-aware Generators for Conversational Systems
Mauajama Firdaus | Priyanshu Priya | Asif Ekbal
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)


pdf bib
EmoInHindi: A Multi-label Emotion and Intensity Annotated Dataset in Hindi for Emotion Recognition in Dialogues
Gopendra Vikram Singh | Priyanshu Priya | Mauajama Firdaus | Asif Ekbal | Pushpak Bhattacharyya
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The long-standing goal of Artificial Intelligence (AI) has been to create human-like conversational systems. Such systems should have the ability to develop an emotional connection with the users, consequently, emotion recognition in dialogues has gained popularity. Emotion detection in dialogues is a challenging task because humans usually convey multiple emotions with varying degrees of intensities in a single utterance. Moreover, emotion in an utterance of a dialogue may be dependent on previous utterances making the task more complex. Recently, emotion recognition in low-resource languages like Hindi has been in great demand. However, most of the existing datasets for multi-label emotion and intensity detection in conversations are in English. To this end, we propose a large conversational dataset in Hindi named EmoInHindi for multi-label emotion and intensity recognition in conversations containing 1,814 dialogues with a total of 44,247 utterances. We prepare our dataset in a Wizard-of-Oz manner for mental health and legal counselling of crime victims. Each utterance of dialogue is annotated with one or more emotion categories from 16 emotion labels including neutral and their corresponding intensity. We further propose strong contextual baselines that can detect the emotion(s) and corresponding emotional intensity of an utterance given the conversational context.