Promita Maitra


pdf bib
A K-Competitive Autoencoder for Aggression Detection in Social Media Text
Promita Maitra | Ritesh Sarkhel
Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)

We present an approach to detect aggression from social media text in this work. A winner-takes-all autoencoder, called Emoti-KATE is proposed for this purpose. Using a log-normalized, weighted word-count vector at input dimensions, the autoencoder simulates a competition between neurons in the hidden layer to minimize the reconstruction loss between the input and final output layers. We have evaluated the performance of our system on the datasets provided by the organizers of TRAC workshop, 2018. Using the encoding generated by Emoti-KATE, a 3-way classification is performed for every social media text in the dataset. Each data point is classified as ‘Overtly Aggressive’, ‘Covertly Aggressive’ or ‘Non-aggressive’. Results show that our (team name: PMRS) proposed method is able to achieve promising results on some of these datasets. In this paper, we have described the effects of introducing an winner-takes-all autoencoder for the task of aggression detection, reported its performance on four different datasets, analyzed some of its limitations and how to improve its performance in future works.


pdf bib
JUNLP at SemEval-2016 Task 13: A Language Independent Approach for Hypernym Identification
Promita Maitra | Dipankar Das
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)