Pulkit Parikh


pdf bib
Leveraging Mental Health Forums for User-level Depression Detection on Social Media
Sravani Boinepelli | Tathagata Raha | Harika Abburi | Pulkit Parikh | Niyati Chhaya | Vasudeva Varma
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The number of depression and suicide risk cases on social media platforms is ever-increasing, and the lack of depression detection mechanisms on these platforms is becoming increasingly apparent. A majority of work in this area has focused on leveraging linguistic features while dealing with small-scale datasets. However, one faces many obstacles when factoring into account the vastness and inherent imbalance of social media content. In this paper, we aim to optimize the performance of user-level depression classification to lessen the burden on computational resources. The resulting system executes in a quicker, more efficient manner, in turn making it suitable for deployment. To simulate a platform agnostic framework, we simultaneously replicate the size and composition of social media to identify victims of depression. We systematically design a solution that categorizes post embeddings, obtained by fine-tuning transformer models such as RoBERTa, and derives user-level representations using hierarchical attention networks. We also introduce a novel mental health dataset to enhance the performance of depression categorization. We leverage accounts of depression taken from this dataset to infuse domain-specific elements into our framework. Our proposed methods outperform numerous baselines across standard metrics for the task of depression detection in text.


pdf bib
Semi-supervised Multi-task Learning for Multi-label Fine-grained Sexism Classification
Harika Abburi | Pulkit Parikh | Niyati Chhaya | Vasudeva Varma
Proceedings of the 28th International Conference on Computational Linguistics

Sexism, a form of oppression based on one’s sex, manifests itself in numerous ways and causes enormous suffering. In view of the growing number of experiences of sexism reported online, categorizing these recollections automatically can assist the fight against sexism, as it can facilitate effective analyses by gender studies researchers and government officials involved in policy making. In this paper, we investigate the fine-grained, multi-label classification of accounts (reports) of sexism. To the best of our knowledge, we work with considerably more categories of sexism than any published work through our 23-class problem formulation. Moreover, we propose a multi-task approach for fine-grained multi-label sexism classification that leverages several supporting tasks without incurring any manual labeling cost. Unlabeled accounts of sexism are utilized through unsupervised learning to help construct our multi-task setup. We also devise objective functions that exploit label correlations in the training data explicitly. Multiple proposed methods outperform the state-of-the-art for multi-label sexism classification on a recently released dataset across five standard metrics.


pdf bib
Multi-label Categorization of Accounts of Sexism using a Neural Framework
Pulkit Parikh | Harika Abburi | Pinkesh Badjatiya | Radhika Krishnan | Niyati Chhaya | Manish Gupta | Vasudeva Varma
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Sexism, an injustice that subjects women and girls to enormous suffering, manifests in blatant as well as subtle ways. In the wake of growing documentation of experiences of sexism on the web, the automatic categorization of accounts of sexism has the potential to assist social scientists and policy makers in utilizing such data to study and counter sexism better. The existing work on sexism classification, which is different from sexism detection, has certain limitations in terms of the categories of sexism used and/or whether they can co-occur. To the best of our knowledge, this is the first work on the multi-label classification of sexism of any kind(s), and we contribute the largest dataset for sexism categorization. We develop a neural solution for this multi-label classification that can combine sentence representations obtained using models such as BERT with distributional and linguistic word embeddings using a flexible, hierarchical architecture involving recurrent components and optional convolutional ones. Further, we leverage unlabeled accounts of sexism to infuse domain-specific elements into our framework. The best proposed method outperforms several deep learning as well as traditional machine learning baselines by an appreciable margin.