Pancheng Wang


2024

Citing comprehensively and appropriately has become a challenging task with the explosive growth of scientific publications. Current citation recommendation systems aim to recommend a list of scientific papers for a given text context or a draft paper. However, none of the existing work focuses on already included citations of full papers, which are imperfect and still have much room for improvement. In the scenario of peer reviewing, it is a common phenomenon that submissions are identified as missing vital citations by reviewers. This may lead to a negative impact on the credibility and validity of the research presented. To help improve citations of full papers, we first define a novel task of Recommending Missed Citations Identified by Reviewers (RMC) and construct a corresponding expert-labeled dataset called CitationR. We conduct an extensive evaluation of several state-of-the-art methods on CitationR. Furthermore, we propose a new framework RMCNet with an Attentive Reference Encoder module mining the relevance between papers, already-made citations, and missed citations. Empirical results prove that RMC is challenging, with the proposed architecture outperforming previous methods in all metrics. We release our dataset and benchmark models to motivate future research on this challenging new task.

2022

Multi-Document Scientific Summarization (MDSS) aims to produce coherent and concise summaries for clusters of topic-relevant scientific papers. This task requires precise understanding of paper content and accurate modeling of cross-paper relationships. Knowledge graphs convey compact and interpretable structured information for documents, which makes them ideal for content modeling and relationship modeling. In this paper, we present KGSum, an MDSS model centred on knowledge graphs during both the encoding and decoding process. Specifically, in the encoding process, two graph-based modules are proposed to incorporate knowledge graph information into paper encoding, while in the decoding process, we propose a two-stage decoder by first generating knowledge graph information of summary in the form of descriptive sentences, followed by generating the final summary. Empirical results show that the proposed architecture brings substantial improvements over baselines on the Multi-Xscience dataset.