Peng Wang

Chinese Academy of Sciences

Other people with similar names: Peng Wang (University of Virginia), Peng Wang (Southeast University Nanjing), Peng Wang (Macau University, Central South University), Peng Wang (May refer to several people), Peng Wang (Zhejiang University), Peng Wang (Fudan University)


2025

pdf bib
LyapLock: Bounded Knowledge Preservation in Sequential Large Language Model Editing
Peng Wang | Biyu Zhou | Xuehai Tang | Jizhong Han | Songlin Hu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models often contain factually incorrect or outdated knowledge, giving rise to model editing methods for precise knowledge updates. However, current mainstream locate-then-edit approaches exhibit a progressive performance decline during sequential editing, due to inadequate mechanisms for long-term knowledge preservation. To tackle this, we model the sequential editing as a constrained stochastic programming. Given the challenges posed by the cumulative preservation error constraint and the gradually revealed editing tasks, **LyapLock** is proposed. It integrates queuing theory and Lyapunov optimization to decompose the long-term constrained programming into tractable stepwise subproblems for efficient solving. This is the first model editing framework with rigorous theoretical guarantees, achieving asymptotic optimal editing performance while meeting the constraints of long-term knowledge preservation. Experimental results show that our framework scales sequential editing capacity to over 10,000 edits while stabilizing general capabilities and boosting average editing efficacy by 11.89% over SOTA baselines. Furthermore, it can be leveraged to enhance the performance of baseline methods. Our code is released on https://github.com/caskcsg/LyapLock.

2023

pdf bib
Adaptive Hyper-parameter Learning for Deep Semantic Retrieval
Mingming Li | Chunyuan Yuan | Huimu Wang | Peng Wang | Jingwei Zhuo | Binbin Wang | Lin Liu | Sulong Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Deep semantic retrieval has achieved remarkable success in online E-commerce applications. The majority of methods aim to distinguish positive items and negative items for each query by utilizing margin loss or softmax loss. Despite their decent performance, these methods are highly sensitive to hyper-parameters, i.e., margin and temperature 𝜏, which measure the similarity of negative pairs and affect the distribution of items in metric space. How to design and choose adaptively parameters for different pairs is still an open challenge. Recently several methods have attempted to alleviate the above problem by learning each parameter through trainable/statistical methods in the recommendation. We argue that those are not suitable for retrieval scenarios, due to the agnosticism and diversity of the queries. To fully overcome this limitation, we propose a novel adaptive metric learning method that designs a simple and universal hyper-parameter-free learning method to improve the performance of retrieval. Specifically, we first propose a method that adaptive obtains the hyper-parameters by relying on the batch similarity without fixed or extra-trainable hyper-parameters. Subsequently, we adopt a symmetric metric learning method to mitigate model collapse issues. Furthermore, the proposed method is general and sheds a highlight on other fields. Extensive experiments demonstrate our method significantly outperforms previous methods on a real-world dataset, highlighting the superiority and effectiveness of our method. This method has been successfully deployed on an online E-commerce search platform and brought substantial economic benefits.