Due to the significant time and effort required for handcrafting translations, most manga never leave the domestic Japanese market. Automatic manga translation is a promising potential solution. However, it is a budding and underdeveloped field and presents complexities even greater than those found in standard translation due to the need to effectively incorporate visual elements into the translation process to resolve ambiguities. In this work, we investigate to what extent multimodal large language models (LLMs) can provide effective manga translation, thereby assisting manga authors and publishers in reaching wider audiences. Specifically, we propose a methodology that leverages the vision component of multimodal LLMs to improve translation quality and evaluate the impact of translation unit size, context length, and propose a token efficient approach for manga translation. Moreover, we introduce a new evaluation dataset – the first parallel Japanese-Polish manga translation dataset – as part of a benchmark to be used in future research. Finally, we contribute an open-source software suite, enabling others to benchmark LLMs for manga translation. Our findings demonstrate that our proposed methods achieve state-of-the-art results for Japanese-English translation and set a new standard for Japanese-Polish.
Context-aware embedding methods boost retrieval accuracy by conditioning on corpus statistics (e.g., term co-occurrence and topical patterns) extracted from neighboring documents. However, this context-aware approach requires access to the target corpus or requires domain-specific finetuning, posing practical barriers in privacy-sensitive or resource-constrained settings. We present ZEST, a zero-shot contextual adaptation framework that replaces real corpus access with a one-time offline synthesis of a compact proxy. Given only a handful of exemplar documents representative of the general target domain, we use a multi-step hierarchical procedure to generate a synthetic context corpus of several hundred documents that aims to emulate key domain-specific distributions. At inference, the frozen context-aware encoder uses this proxy corpus – without any finetuning or target corpus access – to produce domain-adapted embeddings. Across the MTEB benchmark, ZEST’s zero-shot synthetic context adaptation using only five example documents performs within 0.5% of models leveraging full target corpus access – demonstrating remarkable efficacy without any retraining. ZEST thus provides a practical method for deploying high-performance, adaptable embeddings in constrained environments.
Intelligent agents designed for interactive environments face significant challenges in text-based games, a domain that demands complex reasoning and adaptability. While agents based on large language models (LLMs) using self-reflection have shown promise, they struggle when initially successful and exhibit reduced effectiveness when using smaller LLMs. We introduce Sweet&Sour, a novel approach that addresses these limitations in existing reflection methods by incorporating positive experiences and managed memory to enrich the context available to the agent at decision time. Our comprehensive analysis spans both closed- and open-source LLMs and demonstrates the effectiveness of Sweet&Sour in improving agent performance, particularly in scenarios where previous approaches fall short.