Qi Rui
Also published as: 睿 齐
2024
MITF:基于图像映射文本特征的跨模态图文检索方法(MITF:Cross-modal Image-text Retrieval Method with Mapping Images to Text Features)
Lou Xinyue (娄馨月)
|
Li You (李铀)
|
Qi Rui (齐睿)
|
Chen Yufeng (陈钰枫)
|
Xu Jinan (徐金安)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
“减小图文信息间的语义鸿沟,促进跨模态信息的对齐与融合一直是解决跨模态图文检索问题的关键。但现有的双流模型因为训练时图像编码器与文本编码器是分开的,导致图文特征的对齐与融合较难。因此,本文提出图像映射文本特征(MITF)网络将不同模态(图像和文本)的信息映射到单一模态(文本),进一步增强跨模态语义的融合和对齐,提高图文检索的性能。具体地,在冻结预训练的中文视觉语言模型Chinese-CLIP参数的情况下,训练一个MITF网络将图像映射为伪语言标记,在此基础上引入提示词自动学习机制提升模型对于伪语言标记的理解能力。同时,在检索时构建Faiss索引提高检索速度。在三个开源数据集的实验结果表明所提方法相比原始Chinese-CLIP模型检索时的Mean Recall指标平均提高了3.7%,检索速度提高了约4倍。同时,图文特征可视化结果进一步表明所提方法提高了图像特征与文本特征的对齐程度。”
融合确定性因子及区域密度的k-最近邻机器翻译方法(A k-Nearest-Neighbor Machine Translation Method Combining Certainty Factor and Region Density)
Qi Rui (齐睿)
|
Shi Xiangyu (石响宇)
|
Man Zhibo (满志博)
|
Xu Jinan (徐金安)
|
Chen Yufeng (陈钰枫)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
“k-最近邻机器翻译(kNN-MT)是近年来神经机器翻译领域的一个重要研究方向。此类方法可以在不更新机器翻译模型的情况下提高翻译质量,但训练数据中高低频单词的数量不均衡限制了模型效果,且固定的k值无法对处于不同密度分布的数据都产生良好的翻译结果。为此本文提出了一种创新的kNN-MT方法,引入确定性因子(CF)来降低数据不均衡对模型效果的影响,并根据测试点周边数据密度动态选择k值。在多领域德-英翻译数据集上,相比基线实验,本方法在四个领域上翻译效果均有提升,其中三个领域上提升超过1个BLEU,有效提高了神经机器翻译模型的翻译质量。”
Search
Fix data
Co-authors
- Xu Jinan (徐金安) 2
- Chen Yufeng (陈钰枫) 2
- Shi Xiangyu (石响宇) 1
- Lou Xinyue (娄馨月) 1
- Li You (李铀) 1
- show all...
Venues
- ccl2