Tool learning has generated widespread interest as a vital means of interaction between Large Language Models (LLMs) and the physical world. Current research predominantly emphasizes LLMs’ capacity to utilize tools in well-structured environments while overlooking their stability when confronted with the inevitable noise of the real world. To bridge this gap, we introduce *RoTBench*, a multi-level benchmark for evaluating the robustness of LLMs in tool learning. Specifically, we establish five external environments, each featuring varying levels of noise (i.e., Clean, Slight, Medium, Heavy, and Union), providing an in-depth analysis of the model’s resilience across three critical phases: tool selection, parameter identification, and content filling. Experiments involving six widely-used models underscore the urgent necessity for enhancing the robustness of LLMs in tool learning. For instance, the performance of GPT-4 even drops significantly from 80.00 to 58.10 when there is no substantial change in manual accuracy. More surprisingly, the noise correction capability inherent in the GPT family paradoxically impedes its adaptability in the face of mild noise. In light of these findings, we propose RoTTuning, a strategy that enriches the diversity of training environments to bolster the robustness of LLMs in tool learning. The code and data are available at https://github.com/Junjie-Ye/RoTBench.
Retrieval-augmented generation (RAG) methods encounter difficulties when addressing complex questions like multi-hop queries.While iterative retrieval methods improve performance by gathering additional information, current approaches often rely on multiple calls of large language models (LLMs).In this paper, we introduce EfficientRAG, an efficient retriever for multi-hop question answering.EfficientRAG iteratively generates new queries without the need for LLM calls at each iteration and filters out irrelevant information.Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.The code is available in [aka.ms/efficientrag](https://github.com/NIL-zhuang/EfficientRAG-official).
This paper focuses on extending the success of large language models (LLMs) to sequential decision making. Existing efforts either (i) re-train or finetune LLMs for decision making, or (ii) design prompts for pretrained LLMs. The former approach suffers from the computational burden of gradient updates, and the latter approach does not show promising results. In this paper, we propose a new approach that leverages online model selection algorithms to efficiently incorporate LLMs agents into sequential decision making. Statistically, our approach significantly outperforms both traditional decision making algorithms and vanilla LLM agents. Computationally, our approach avoids the need for expensive gradient updates of LLMs, and throughout the decision making process, it requires only a small number of LLM calls. We conduct extensive experiments to verify the effectiveness of our proposed approach. As an example, on a large-scale Amazon dataset, our approach achieves more than a 6x performance gain over baselines while calling LLMs in only 1.5% of the time steps.
Modeling and leveraging layout reading order in visually-rich documents (VrDs) is critical in document intelligence as it captures the rich structure semantics within documents.Previous works typically formulated layout reading order as a permutation of layout elements, i.e. a sequence containing all the layout elements.However, we argue that this formulation does not adequately convey the complete reading order information in the layout, which may potentially lead to performance decline in downstream tasks.To address this issue, we propose to model the layout reading order as ordering relations over the set of layout elements, which have sufficient expressive capability for the complete reading order information. To enable empirical evaluation on methods towards the improved form of reading order prediction (ROP), we establish a comprehensive benchmark dataset including the reading order annotation as relations over layout elements, together with a relation-extraction-based method that outperforms previous models. Moreover, we propose a reading-order-relation-enhancing pipeline to improve model performance on any arbitrary VrD task by introducing additional reading order relation inputs.We conduct comprehensive experiments to demonstrate that the pipeline generally benefits downstream VrD tasks:(1) with utilizing the reading order relation information, the enhanced downstream models achieve SOTA results on both two task settings of the targeted dataset; (2) with utilizing the pseudo reading order information generated by the proposed ROP model, the performance of the enhanced models has improved across all three models and eight cross-domain VrD-IE/QA task settings without targeted optimization.
Task-oriented dialogue (TOD) systems aim to efficiently handle task-oriented conversations, including information collection. How to utilize TOD accurately, efficiently and effectively for information collection has always been a critical and challenging task. Recent studies have demonstrated that Large Language Models (LLMs) excel in dialogue, instruction generation, and reasoning, and can significantly enhance the performance of TOD through fine-tuning. However, current datasets primarily cater to user-led systems and are limited to predefined specific scenarios and slots, thereby necessitating improvements in the proactiveness, diversity, and capabilities of TOD. In this study, we present a detailed multi-domain task-oriented data construction process for conversations, and a Chinese dialogue dataset generated based on this process, **TransferTOD**, which authentically simulates human-computer dialogues in 30 popular life service scenarios. Leveraging this dataset, we trained a model using full-parameter fine-tuning called **TransferTOD-7B**, showcasing notable abilities in slot filling and questioning. Our work has demonstrated its strong generalization capabilities in various downstream scenarios, significantly enhancing both data utilization efficiency and system performance. The data is released in https://github.com/KongLongGeFDU/TransferTOD.
Scientific information extraction (SciIE) is critical for converting unstructured knowledge from scholarly articles into structured data (entities and relations). Several datasets have been proposed for training and validating SciIE models. However, due to the high complexity and cost of annotating scientific texts, those datasets restrict their annotations to specific parts of paper, such as abstracts, resulting in the loss of diverse entity mentions and relations in context. In this paper, we release a new entity and relation extraction dataset for entities related to datasets, methods, and tasks in scientific articles. Our dataset contains 106 manually annotated full-text scientific publications with over 24k entities and 12k relations. To capture the intricate use and interactions among entities in full texts, our dataset contains a fine-grained tag set for relations. Additionally, we provide an out-of-distribution test set to offer a more realistic evaluation. We conduct comprehensive experiments, including state-of-the-art supervised models and our proposed LLM-based baselines, and highlight the challenges presented by our dataset, encouraging the development of innovative models to further the field of SciIE.
Reinforcement Learning from Human Feedback (RLHF) is a crucial approach to aligning language models with human values and intentions. A fundamental challenge in this method lies in ensuring that the reward model accurately understands and evaluates human preferences. Current methods rely on ranking losses to teach the reward model to assess preferences, but they are susceptible to noise and ambiguous data, often failing to deeply understand human intentions. To address this issue, we introduce contrastive learning into the reward modeling process. In addition to supervised ranking loss, we introduce an unsupervised contrastive loss to enable the reward model to fully capture the distinctions in contrastive data. Experimental results demonstrate that the proposed contrastive learning-based reward modeling method effectively enhances the generalization of the reward model, stabilizes the reinforcement learning training process, and improves the final alignment with human preferences.
Large language models (LLMs) have achieved tremendous success in understanding language and processing text. However, question-answering (QA) on lengthy documents faces challenges of resource constraints and a high propensity for errors, even for the most advanced models such as GPT-4 and Claude2.In this paper, we introduce _LongAgent_, a multi-agent collaboration method that enables efficient and effective QA over 128k-token-long documents. _LongAgent_ adopts a _divide-and-conquer_ strategy, breaking down lengthy documents into shorter, more manageable text chunks. A leader agent comprehends the user’s query and organizes the member agents to read their assigned chunks, reasoning a final answer through multiple rounds of discussion.Due to members’ hallucinations, it’s difficult to guarantee that every response provided by each member is accurate.To address this, we develop an _inter-member communication_ mechanism that facilitates information sharing, allowing for the detection and mitigation of hallucinatory responses.Experimental results show that a LLaMA-2 7B driven by _LongAgent_ can effectively support QA over 128k-token documents, achieving 16.42% and 1.63% accuracy gains over GPT-4 on single-hop and multi-hop QA settings, respectively.
Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning. Specifically, we construct a new dataset MathTrap by introducing carefully designed logical traps into the problem descriptions of MATH and GSM8K. Since problems with logical flaws are quite rare in the real world, these represent “unseen” cases to LLMs. Solving these requires the models to systematically compose (1) the mathematical knowledge involved in the original problems with (2) knowledge related to the introduced traps. Our experiments show that while LLMs possess both components of requisite knowledge, they do not spontaneously combine them to handle these novel cases. We explore several methods to mitigate this deficiency, such as natural language prompts, few-shot demonstrations, and fine-tuning. We find that LLMs’ performance can be improved through the above external intervention. Overall, systematic compositionality remains an open challenge for large language models.
Retrieval-Augmented Generation (RAG) significantly improved the ability of Large Language Models (LLMs) to solve knowledge-intensive tasks. While existing research seeks to enhance RAG performance by retrieving higher-quality documents or designing RAG-specific LLMs, the internal mechanisms within LLMs that contribute to RAG’s effectiveness remain underexplored. In this paper, we aim to investigate these internal mechanisms within the popular Mixture-of-Expert (MoE)-based LLMs and demonstrate how to improve RAG by examining expert activations in these LLMs. Our controlled experiments reveal that several core groups of experts are primarily responsible for RAG-related behaviors. The activation of these core experts can signify the model’s inclination towards external/internal knowledge and adjust its behavior. For instance, we identify core experts that can (1) indicate the sufficiency of the model’s internal knowledge, (2) assess the quality of retrieved documents, and (3) enhance the model’s ability to utilize context. Based on these findings, we propose several strategies to enhance RAG’s efficiency and effectiveness through expert activation. Experimental results across various datasets and MoE LLMs show the effectiveness of our method.
Large language models (LLMs) have shown promising abilities of in-context learning (ICL), adapting swiftly to new tasks with only few-shot demonstrations. However, current few-shot methods heavily depend on high-quality, query-specific demos, which are often lacking. When faced with out-of-demonstration (OOD) queries, methods that rely on hand-crafted demos or external retrievers might fail. To bridge the gap between limited demos and OOD queries, we propose Self-Demos, a novel prompting method that elicits the inherent generalizability in LLMs by query-aware demo generation. The generated demos strategically interpolate between existing demos and the given query, transforming the query from OOD to ID. To evaluate the effectiveness of our approach, we manually constructed OOD-Toolset, a dataset in the tool-using scenario with over 300 real-world APIs and 1000 instances, each consisting of three tool-use cases as demos and an OOD query. Thorough experiments on our dataset and two public math benchmarks have shown that our method can outperform state-of-the-art baselines in the OOD setting. Moreover, we conduct a range of analyses to validate Self-Demos’s generalization and provide more insights.
Large Language Models (LLMs) have shown potential in reasoning over structured environments, e.g., knowledge graphs and tables. Such tasks typically require multi-hop reasoning, i.e., match natural language utterance with instances in the environment. Previous works adopt LLMs to incrementally build a reasoning path, where LLMs either invoke tools or pick up items by step-by-step interacting with the environment. We propose Reasoning-Path-Editing (Readi), a novel framework where LLMs can efficiently and faithfully reason over structured environments. In Readi, LLMs initially generate a reasoning path given a query, and edit the path only when necessary. We instantiate the path on structured environments and provide feedback to edit the path if anything goes wrong. Experimental results on three KGQA and two TableQA datasets show the effectiveness of Readi, significantly surpassing previous LLM-based methods (by 9.1% Hit@1 on WebQSP, 12.4% on MQA-3H and 9.5% on WTQ), comparable with state-of-the-art fine-tuned methods (67% on CWQ and 74.7% on WebQSP) and substantially boosting the vanilla LLMs (by 14.9% on CWQ). Our code will be available on https://aka.ms/readi.
The remarkable capability of large language models(LLMs) for in-context learning(ICL) needs to be activated by demonstration examples. Prior work has extensively explored the selection of examples for ICL, predominantly following the “select then organize” paradigm, such approaches often neglect the internal relationships between examples and exist an inconsistency between the training and inference. In this paper, we formulate the problem as a Sequential Selection problem and introduce Se2, a sequential-aware method that leverages the LLM’s feedback on varying context, aiding in capturing inter-relationships and sequential information among examples, significantly enriching the contextuality and relevance of ICL prompts. Meanwhile, we utilize beam search to seek and construct example sequences, enhancing both quality and diversity. Extensive experiments across 23 NLP tasks from 8 distinct categories illustrate that Se2 markedly surpasses competitive baselines and achieves 42% relative improvement over random selection. Further in-depth analysis shows the effectiveness of proposed strategies, highlighting Se2‘s exceptional stability and adaptability across various scenarios. Code available at https://github.com/microsoft/LMOps.
As one of the most popular parameter-efficient fine-tuning (PEFT) methods, low-rank adaptation (LoRA) is commonly applied to fine-tune large language models (LLMs). However, updating the weights of LoRA blocks effectively and expeditiously is challenging due to the long calculation path in the original model. To address this, we propose ResLoRA, an improved framework of LoRA. By adding residual paths during training and using merging approaches to eliminate these extra paths during inference, our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA. The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method. To the best of our knowledge, ResLoRA is the first work that combines the residual path with LoRA. The code of our method is available at [this url](https://github.com/microsoft/LMOps/tree/main/reslora).
Empowering Large Language Models (LLMs) with distinct human-like personality traits has become an innovative task for developing advanced dialog systems.Although LLMs demonstrate impressive capabilities in following instructions, directly prompting them to exhibit certain personalities through manually crafted instructions may result in sub-optimal performance.In this paper, we propose a plug-and-play prompting method to manipulate the LLMs’ personality traits.Specifically, we append discrete personalized suffixes, automatically generated through an aggregated gradient-based search method, to the user query or dialog histories and induce LLMs to respond with target personalities.In addition, due to the high redundancy of the search space, we adopt a reward-based strategy to prune the vocabulary and focus exclusively on influential tokens.Experiment results on four models ranging from 1.1B to 13B show that our method achieves 79.9% accuracy in customizing LLMs’ personalities, significantly outperforming other prompting methods (65.5%) and model editing methods.Our method also excels in generation fluency and quality with the lowest generation perplexity and the highest GPT-4 evaluation scores.
Large language models (LLMs) have shown great potential to empower various domains and are often customized by fine-tuning for the requirements of different applications. However, the powerful learning ability of LLMs not only enables them to learn new tasks but also makes them vulnerable to learning undesired behaviors, such as harmfulness and hallucination, as the fine-tuning data often implicitly or explicitly contains such content. Can we fine-tune LLMs on harmful data without learning harmful behaviors? This paper proposes a controllable training framework to make undesired behaviors unlearnable during the fine-tuning process. Specifically, we introduce security vectors to control the model’s behavior and make it consistent with the undesired behavior. Security vectors are activated during fine-tuning, the consistent behavior makes the model believe that such behavior has already been learned and there is no need for further optimization, while inconsistent data can still be learned. After fine-tuning, security vectors are deactivated to restore the LLM’s normal behavior. Our experiments show that the security vectors can prevent LLM from learning harmful and hallucination behavior while preserving the ability to learn other information.
In the current landscape of large language models (LLMs), the process of instruction tuning serves as an essential step. Considering the high computing power overhead, data-efficient instruction tuning was proposed to reduce the training data size in this process, aiming at selecting high-quality instructional data. Nevertheless, we argue that most current data-efficient instruction-tuning methods are highly dependent on the quality of the original instruction-tuning dataset. When it comes to datasets synthesized by LLMs, a common scenario in this field, dirty samples will even be selected with a higher probability than other samples. To address these challenges, we utilized external knowledge (relevant examples or paragraphs) to evaluate those samples synthesized by LLMs with an in-context-based relative predictive entropy. Based on the new metric, we proposed a framework, dubbed as RECOST, which integrates external-knowledge-base re-ranking and diversity-consistent sampling into a single pipeline. Through extensive experiments on several synthetic datasets (Alpaca and Alpaca-gpt4), we demonstrate the effectiveness of our method and achieve even better results with only 1% of the full dataset.
Generalizing to longer sentences is important for recent Transformer-based language models. Besides algorithms manipulating explicit position features, the success of Transformers without position encodings (NoPE) provides a new way to overcome the challenge. In this paper, we study the length generalization property of NoPE. We find that although NoPE can extend to longer sequences than the commonly used explicit position encodings, it still has a limited context length. We identify a connection between the failure of NoPE’s generalization and the distraction of attention distributions. We propose a parameter-efficient tuning for searching attention heads’ best temperature hyper-parameters, which substantially expands NoPE’s context size. Experiments on long sequence language modeling, the synthetic passkey retrieval task and real-world long context tasks show that NoPE can achieve competitive performances with state-of-the-art length generalization algorithms. The source code is publicly accessible
Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 ≈ 0.8 for scenarios with prominent gradients in search space, using only ~20% of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag.
In Reinforcement Learning from Human Feedback (RLHF), the reward model plays a crucial role in aligning language model outputs with human values. The human preference data used to train the reward model consists of a prompt and a response pair, with humans annotating which response better aligns with human value preferences. Due to the complexity and subjectivity of the annotation task, multiple organizations including OpenAI and Anthropic report significant noise in the human preference datasets, leading to instability and deviation in reward model training from human values. We discover that the difference in scores assigned to response pairs by the reward model effectively indicates the quality of data, and data of varying qualities show significant distinctions in reward model training. We introduce a method that automatically adjusts reward modeling based on data quality, reducing the impact of noise and making full use of dataset. Experiments on multiple human preference datasets demonstrate that our method stabilizes reward model training and significantly enhances the alignment performance of RLHF.
Large language models (LLMs) have achieved impressive performance in numerous domains but often struggle to process lengthy inputs effectively and efficiently due to limited length generalization and attention’s quadratic computational demands. Many sought to mitigate this by restricting the attention window within the pre-trained length. However, these methods introduce new issues such as ignoring the middle context and requiring additional training. To address these problems, we propose LongHeads, a training-free framework that enhances LLM’s long context ability by unlocking multi-head attention’s untapped potential. Instead of allowing each head to attend to the full sentence, which struggles with generalizing to longer sequences due to out-of-distribution (OOD) issues, we allow each head to process in-distribution length by selecting and attending to important context chunks. To this end, we propose a chunk selection strategy that relies on the inherent correlation between the query and the key representations, efficiently distributing context chunks to different heads. In this way, each head ensures it can effectively process attended tokens within the trained length, while different heads in different layers can collectively process longer contexts. LongHeads works efficiently and fits seamlessly with many LLMs that use relative positional encoding. LongHeads achieves 100% accuracy at the 128k length on passkey retrieval task, verifying LongHeads’ efficacy in extending the usable context window for existing models.
Reinforcement Learning from Human Feedback (RLHF) has proven effective in aligning large language models with human intentions, yet it often relies on complex methodologies like Proximal Policy Optimization (PPO) that require extensive hyper-parameter tuning and present challenges in sample efficiency and stability. In this paper, we introduce Inverse-Q*, an innovative framework that transcends traditional RL methods by optimizing token-level reinforcement learning without the need for additional reward or value models. Inverse-Q* leverages direct preference optimization techniques but extends them by estimating the conditionally optimal policy directly from the model’s responses, facilitating more granular and flexible policy shaping. Our approach reduces reliance on human annotation and external supervision, making it especially suitable for low-resource settings. We present extensive experimental results demonstrating that Inverse-Q* not only matches but potentially exceeds the effectiveness of PPO in terms of convergence speed and the alignment of model responses with human preferences. Our findings suggest that Inverse-Q* offers a practical and robust alternative to conventional RLHF approaches, paving the way for more efficient and adaptable model training approaches.
In many PDF documents, the reading order of text blocks is missing, which can hinder machine understanding of the document’s content.Existing works try to extract one universal reading order for a PDF file.However, applications, like Retrieval Augmented Generation (RAG), require breaking long articles into sections and subsections for better indexing.For this reason, this paper introduces a new task and dataset, PDF-to-Tree, which organizes the text blocks of a PDF into a tree structure.Since a PDF may contain thousands of text blocks, far exceeding the number of words in a sentence, this paper proposes a transition-based parser that uses a greedy strategy to build the tree structure.Compared to parser for plain text, we also use multi-modal features to encode the parser state.Experiments show that our approach achieves an accuracy of 93.93%, surpassing the performance of baseline methods by an improvement of 6.72%.
Vast amount of online conversations are produced on a daily basis, resulting in a pressing need to automatic conversation understanding. As a basis to structure a discussion, we identify the responding relations in the conversation discourse, which link response utterances to their initiations. To figure out who responded to whom, here we explore how the consistency of topic contents and dependency of discourse roles indicate such interactions, whereas most prior work ignore the effects of latent factors underlying word occurrences. We propose a neural model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links via exploiting topic consistency and discourse dependency. Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.
Supervised fine-tuning (SFT) is a crucial step for large language models (LLMs), enabling them to align with human instructions and enhance their capabilities in downstream tasks. Substantially increasing instruction data is a direct solution to align the model with a broader range of downstream tasks or notably improve its performance on a specific task. However, we find that large-scale increases in instruction data can damage the world knowledge previously stored in LLMs. To address this challenge, we propose LoRAMoE, a novelty framework that introduces several low-rank adapters (LoRA) and integrates them by using a router network, like a plugin version of Mixture of Experts (MoE). It freezes the backbone model and forces a portion of LoRAs to focus on leveraging world knowledge to solve downstream tasks, to alleviate world knowledge forgetting. Experimental results show that, as the instruction data increases, LoRAMoE can significantly improve the ability to process downstream tasks, while maintaining the world knowledge stored in the LLM. Our code is available at https://github.com/Ablustrund/LoRAMoE.
Tool learning is widely acknowledged as a foundational approach or deploying large language models (LLMs) in real-world scenarios. While current research primarily emphasizes leveraging tools to augment LLMs, it frequently neglects emerging safety considerations tied to their application. To fill this gap, we present ToolSword, a comprehensive framework dedicated to meticulously investigating safety issues linked to LLMs in tool learning. Specifically, ToolSword delineates six safety scenarios for LLMs in tool learning, encompassing maliciousqueries and jailbreakattacks in the input stage, noisymisdirection and riskycues in the execution stage, and harmfulfeedback and errorconflicts in the output stage. Experiments conducted on 11 open-source and closed-source LLMs reveal enduring safety challenges in tool learning, such as handling harmful queries, employing risky tools, and delivering detrimental feedback, which even GPT-4 is susceptible to. Moreover, we conduct further studies with the aim of fostering research on tool learning safety. The data will be released upon acceptance of the paper.
The principle of continual relation extraction (CRE) involves adapting to emerging novel relations while preserving old knowledge. Existing CRE approaches excel in preserving old knowledge but falter when confronted with contaminated data streams, likely due to an artificial assumption of no annotation errors. Recognizing the prevalence of noisy labels in real-world datasets, we introduce a more practical learning scenario, termed as noisy-CRE. In response to this challenge, we propose a noise-resistant contrastive framework called Noise-guided Attack in Contrastive Learning (NaCL), aimed at learning incremental corrupted relations. Diverging from conventional approaches like sample discarding or relabeling in the presence of noisy labels, NaCL takes a transformative route by modifying the feature space through targeted attack. This attack aims to align the feature space with the provided, albeit inaccurate, labels, thereby enhancing contrastive representations. Extensive empirical validations demonstrate the consistent performance improvement of NaCL with increasing noise rates, surpassing state-of-the-art methods.
Self-attention and position embedding are two crucial modules in transformer-based Large Language Models (LLMs). However, the potential relationship between them is far from well studied, especially for long context window extending. In fact, anomalous behaviors that hinder long context extrapolation exist between Rotary Position Embedding (RoPE) and vanilla self-attention.Incorrect initial angles between Q and K can cause misestimation in modeling rotary position embedding of the closest tokens.To address this issue, we propose Collinear Constrained Attention mechanism, namely CoCA. Specifically, we enforce a collinear constraint between Q and K to seamlessly integrate RoPE and self-attention.While only adding minimal computational and spatial complexity, this integration significantly enhances long context window extrapolation ability. We provide an optimized implementation, making it a drop-in replacement for any existing transformer-based models.Extensive experiments demonstrate that CoCA excels in extending context windows. A CoCA-based GPT model, trained with a context length of 512, can extend the context window up to 32K (60×) without any fine-tuning.Additionally, incorporating CoCA into LLaMA-7B achieves extrapolation up to 32K within a training length of only 2K.Our code is publicly available at: https://github.com/codefuse-ai/Collinear-Constrained-Attention
The advancement of large language models (LLMs) has significantly propelled the field of code generation. Previous work integrated reinforcement learning (RL) with compiler feedback for exploring the output space of LLMs to enhance code generation quality. However, the lengthy code generated by LLMs in response to complex human requirements makes RL exploration a challenge. Also, since the unit tests may not cover the complicated code, optimizing LLMs by using these unexecuted code snippets is ineffective. To tackle these challenges, we introduce StepCoder, a novel RL framework for code generation, consisting of two main components: CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks, while FGO only optimizes the model by masking the unexecuted code segments to provide Fine-Grained Optimization. In addition, we furthermore construct the APPS+ dataset for RL training, which is manually verified to ensure the correctness of unit tests. Experimental results show that our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks. The code and dataset will be made available upon publication.
Large language models are meticulously aligned to be both helpful and harmless. However, recent research points to a potential overkill which means models may refuse to answer benign queries. In this paper, we investigate the factors for overkill by exploring how models handle and determine the safety of queries. Our findings reveal the presence of shortcuts within models, leading to excessive attention to harmful words like ‘kill’ and prompts emphasizing safety will exacerbate overkill. Based on these insights, we introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon. We first extract such excessive attention by amplifying the difference in the model’s output distributions when responding to system prompts that either include or omit an emphasis on safety. Then we determine the final next-token predictions by downplaying the excessive attention via contrastive decoding. Empirical results have indicated that our method has achieved an average reduction of the refusal rate by 20 % while having almost no impact on safety.
Large Language Models (LLMs) have demonstrated considerable cross-lingual alignment and generalization ability. Current research primarily focuses on improving LLMs’ cross-lingual generalization capabilities. However, there is still a lack of research on the intrinsic mechanisms of how LLMs achieve cross-lingual alignment. From the perspective of region partitioning, this paper conducts several investigations on the linguistic competence of LLMs. We discover a core region in LLMs that corresponds to linguistic competence, accounting for approximately 1% of the total model parameters. Removing this core region by setting parameters to zero results in a significant performance decrease across 30 different languages. Furthermore, this core region exhibits significant dimensional dependence, perturbations to even a single parameter on specific dimensions leading to a loss of linguistic competence. Moreover, we discover that distinct monolingual regions exist for different languages, and disruption to these specific regions substantially reduces the LLMs’ proficiency in those corresponding languages. Our research also indicates that freezing the core linguistic region during further pre-training can mitigate the issue of catastrophic forgetting (CF), a common phenomenon observed during further pre-training of LLMs. Overall, exploring the LLMs’ functional regions provides insights into the foundation of their intelligence.
Large language models (LLMs) have emerged as a promising alternative to expensive human evaluations. However, the alignment and coverage of LLM-based evaluations are often limited by the scope and potential bias of the evaluation prompts and criteria. To address this challenge, we propose HD-Eval, a novel framework that iteratively aligns LLM-based evaluators with human preference via Hierarchical Criteria Decomposition. HD-Eval inherits the essence from the evaluation mindset of human experts and enhances the alignment of LLM-based evaluators by decomposing a given evaluation task into finer-grained criteria, aggregating them according to estimated human preferences, pruning insignificant criteria with attribution, and further decomposing significant criteria. By integrating these steps within an iterative alignment training process, we obtain a hierarchical decomposition of criteria that comprehensively captures aspects of natural language at multiple levels of granularity. Implemented as a white box, the human preference-guided aggregator is efficient to train and more explainable than relying solely on prompting, and its independence from model parameters makes it applicable to closed-source LLMs. Extensive experiments on three evaluation domains demonstrate the superiority of HD-Eval in further aligning state-of-the-art evaluators and providing deeper insights into the explanation of evaluation results and the task itself.
As instruction-tuned large language models (LLMs) evolve, aligning pretrained foundation models presents increasing challenges. Existing alignment strategies, which typically leverage diverse and high-quality data sources, often overlook the intrinsic uncertainty of tasks, learning all data samples equally. This may lead to suboptimal data efficiency and model performance. In response, we propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios, by introducing the sample uncertainty (elicited from more capable LLMs). We implement UAL by a simple fashion – adaptively setting the label smoothing value of training according to the uncertainty of individual samples. Analysis shows that our UAL indeed facilitates better token clustering in the feature space, validating our hypothesis. Extensive experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning. Notably, LLMs aligned in a mixed scenario have achieved an average improvement of 10.62% on high-entropy tasks (i.e., AlpacaEval leaderboard), and 1.81% on complex low-entropy tasks (i.e., MetaMath and GSM8K).
Customizing LLMs for a specific task involves separating high-quality responses from lower-quality ones. This skill can be developed using supervised fine-tuning with extensive human preference data. However, obtaining a large volume of expert-annotated data is costly for most tasks. In this paper, we explore a novel method to optimize LLMs using ranking metrics. This method trains the model to prioritize the best responses from a pool of candidates created for a particular task. Rather than a traditional full ordering, we advocate for a partial ordering, as achieving consensus on the perfect order of candidate responses can be challenging. Our partial ordering is more robust, less sensitive to noise, and can be achieved with limited human annotations or through heuristic methods. We test our system’s improved response generation ability using benchmark datasets, including textual entailment and multi-document question answering. We conduct ablation studies to understand crucial factors, such as how to gather candidate responses for a specific task, determine their most suitable order, and balance supervised fine-tuning with ranking metrics. Our approach, named RESCUE, offers a promising avenue for enhancing the response generation and task accuracy of LLMs.
Recent advancements in large language models (LLMs) and their emergent capabilities make LLM a promising reference-free evaluator on the quality of natural language generation, and a competent alternative to human evaluation. However, hindered by the closed-source or high computational demand to host and tune, there is a lack of practice to further calibrate an off-the-shelf LLM-based evaluator towards better human alignment. In this work, we propose AutoCalibrate, a multi-stage, gradient-free approach to automatically calibrate and align an LLM-based evaluator toward human preference. Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels. Then, an initial set of scoring criteria is drafted by the language model itself, leveraging in-context learning on different few-shot examples. To further calibrate this set of criteria, we select the best performers and re-draft them with self-refinement. Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration. Our comprehensive qualitative analysis conveys insightful intuitions and observations on the essence of effective scoring criteria.
Domain adaption has been widely adapted for cross-domain sentiment analysis to transfer knowledge from the source domain to the target domain. Whereas, most methods are proposed under the assumption that the target (test) domain is known, making them fail to generalize well on unknown test data that is not always available in practice. In this paper, we focus on the problem of domain generalization for cross-domain sentiment analysis. Specifically, we propose a backdoor adjustment-based causal model to disentangle the domain-specific and domain-invariant representations that play essential roles in tackling domain shift. First, we rethink the cross-domain sentiment analysis task in a causal view to model the causal-and-effect relationships among different variables. Then, to learn an invariant feature representation, we remove the effect of domain confounders (e.g., domain knowledge) using the backdoor adjustment. A series of experiments over many homologous and diverse datasets show the great performance and robustness of our model by comparing it with the state-of-the-art domain generalization baselines.
Pretrained language models can be applied for various downstream tasks but are susceptible to subtle perturbations. Most adversarial defense methods often introduce adversarial training during the fine-tuning phase to enhance empirical robustness. However, the repeated execution of adversarial training hinders training efficiency when transitioning to different tasks. In this paper, we explore the transferability of robustness within subnetworks and leverage this insight to introduce a novel adversarial defense method ORTicket, eliminating the need for separate adversarial training across diverse downstream tasks. Specifically, (i) pruning the full model using the MLM task (the same task employed for BERT pretraining) yields a task-agnostic robust subnetwork(i.e., winning ticket in Lottery Ticket Hypothesis); and (ii) fine-tuning this subnetwork for downstream tasks. Extensive experiments demonstrate that our approach achieves comparable robustness to other defense methods while retaining the efficiency of traditional fine-tuning.This also confirms the significance of selecting MLM task for identifying the transferable robust subnetwork. Furthermore, our method is orthogonal to other adversarial training approaches, indicating the potential for further enhancement of model robustness.
Modeling social media users is the core of social governance in the digital society. Existing works have incorporated different digital traces to better learn the representations of social media users, including text information encoded by pre-trained language models and social network information encoded by graph models. However, limited by overloaded text information and hard-to-collect social network information, they cannot utilize global text information and cannot be generalized without social relationships. In this paper, we propose a Pre-training Architecture for Social Media User Modeling based on Text Graph(PASUM). We aggregate all microblogs to represent social media users based on the text graph model and learn the mapping from microblogs to user representation. We further design inter-user and intra-user contrastive learning tasks to inject general structural information into the mapping. In different scenarios, we can represent users based on text, even without social network information. Experimental results on various downstream tasks demonstrate the effectiveness and superiority of our framework.
Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However, recent studies have raised concerns about the robustness of LLMs for natural language understanding (NLU) tasks when prompted with instructions combining textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose in-context demonstrations using both clean and adversarial samples (adversarial context method) to further boost the robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms prompting LLMs with natural language, for example, with gpt-3.5-turbo on average, our method achieves an improvement of 5.68% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).
We present SciDMT, an enhanced and expanded corpus for scientific mention detection, offering a significant advancement over existing related resources. SciDMT contains annotated scientific documents for datasets (D), methods (M), and tasks (T). The corpus consists of two components: 1) the SciDMT main corpus, which includes 48 thousand scientific articles with over 1.8 million weakly annotated mention annotations in the format of in-text span, and 2) an evaluation set, which comprises 100 scientific articles manually annotated for evaluation purposes. To the best of our knowledge, SciDMT is the largest corpus for scientific entity mention detection. The corpus’s scale and diversity are instrumental in developing and refining models for tasks such as indexing scientific papers, enhancing information retrieval, and improving the accessibility of scientific knowledge. We demonstrate the corpus’s utility through experiments with advanced deep learning architectures like SciBERT and GPT-3.5. Our findings establish performance baselines and highlight unresolved challenges in scientific mention detection. SciDMT serves as a robust benchmark for the research community, encouraging the development of innovative models to further the field of scientific information extraction.
Deep neural networks (DNNs) are notoriously vulnerable to adversarial attacks that place carefully crafted perturbations on normal examples to fool DNNs. To better understand such attacks, a characterization of the features carried by adversarial examples is needed. In this paper, we tackle this challenge by inspecting the subspaces of sample features through spectral analysis. We first empirically show that the features of either clean signals or adversarial perturbations are redundant and span in low-dimensional linear subspaces respectively with minimal overlap, and the classical low-dimensional subspace projection can suppress perturbation features out of the subspace of clean signals. This makes it possible for DNNs to learn a subspace where only features of clean signals exist while those of perturbations are discarded, which can facilitate the distinction of adversarial examples. To prevent the residual perturbations that is inevitable in subspace learning, we propose an independence criterion to disentangle clean signals from perturbations. Experimental results show that the proposed strategy enables the model to inherently suppress adversaries, which not only boosts model robustness but also motivates new directions of effective adversarial defense.
Our team focuses on the multimodal domain of images and texts, we propose a model that can learn the matching relationship between text-image pairs by contrastive learning. More specifically, We train the model from the labeled data provided by the official organizer, after pre-training, texts are used to reference learned visual concepts enabling visual word sense disambiguation tasks. In addition, the top results our teams get have been released showing the effectiveness of our solution.
Our team focuses on the multimodal domain of images and texts, we propose a model that can learn the matching relationship between text-image pairs by contrastive learning. More specifically, We train the model from the labeled data provided by the official organizer, after pre-training, texts are used to reference learned visual concepts enabling visual word sense disambiguation tasks. In addition, the top results our teams get have been released showing the effectiveness of our solution.
Adversarial detection aims to detect adversarial samples that threaten the security of deep neural networks, which is an essential step toward building robust AI systems. Density-based estimation is widely considered as an effective technique by explicitly modeling the distribution of normal data and identifying adversarial ones as outliers. However, these methods suffer from significant performance degradation when the adversarial samples lie close to the non-adversarial data manifold. To address this limitation, we propose a score-based generative method to implicitly model the data distribution. Our approach utilizes the gradient of the log-density data distribution and calculates the distribution gap between adversarial and normal samples through multi-step iterations using Langevin dynamics. In addition, we use supervised contrastive learning to guide the gradient estimation using label information, which avoids collapsing to a single data manifold and better preserves the anisotropy of the different labeled data distributions. Experimental results on three text classification tasks upon four advanced attack algorithms show that our approach is a significant improvement (average +15.2 F1 score against previous SOTA) over previous detection methods.
Recent studies have shown that dual encoder models trained with the sentence-level translation ranking task are effective methods for cross-lingual sentence embedding. However, our research indicates that token-level alignment is also crucial in multilingual scenarios, which has not been fully explored previously. Based on our findings, we propose a dual-alignment pre-training (DAP) framework for cross-lingual sentence embedding that incorporates both sentence-level and token-level alignment. To achieve this, we introduce a novel representation translation learning (RTL) task, where the model learns to use one-side contextualized token representation to reconstruct its translation counterpart. This reconstruction objective encourages the model to embed translation information into the token representation. Compared to other token-level alignment methods such as translation language modeling, RTL is more suitable for dual encoder architectures and is computationally efficient. Extensive experiments on three sentence-level cross-lingual benchmarks demonstrate that our approach can significantly improve sentence embedding. Our code is available at https://github.com/ChillingDream/DAP.
To help the visually impaired enjoy movies, automatic movie narrating systems are expected to narrate accurate, coherent, and role-aware plots when there are no speaking lines of actors. Existing works benchmark this challenge as a normal video captioning task via some simplifications, such as removing role names and evaluating narrations with ngram-based metrics, which makes it difficult for automatic systems to meet the needs of real application scenarios. To narrow this gap, we construct a large-scale Chinese movie benchmark, named Movie101. Closer to real scenarios, the Movie Clip Narrating (MCN) task in our benchmark asks models to generate role-aware narration paragraphs for complete movie clips where no actors are speaking. External knowledge, such as role information and movie genres, is also provided for better movie understanding. Besides, we propose a new metric called Movie Narration Score (MNScore) for movie narrating evaluation, which achieves the best correlation with human evaluation. Our benchmark also supports the Temporal Narration Grounding (TNG) task to investigate clip localization given text descriptions. For both two tasks, our proposed methods well leverage external knowledge and outperform carefully designed baselines. The dataset and codes are released at https://github.com/yuezih/Movie101.
Logical reasoning over incomplete knowledge graphs to answer complex logical queries is a challenging task. With the emergence of new entities and relations in constantly evolving KGs, inductive logical reasoning over KGs has become a crucial problem. However, previous PLMs-based methods struggle to model the logical structures of complex queries, which limits their ability to generalize within the same structure. In this paper, we propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs. It encodes linearized query structures and entities using pre-trained language models to find answers. For structure modeling of complex queries, we design stepwise instructions that implicitly prompt PLMs on the execution order of geometric operations in each query. We further separately model different geometric operations (i.e., projection, intersection, and union) on the representation space using a pre-trained encoder with additional attention and maxout layers to enhance structured modeling. We conduct experiments on two inductive logical reasoning datasets and three transductive datasets. The results demonstrate the effectiveness of our method on logical reasoning over KGs in both inductive and transductive settings.
Current clustering-based Open Relation Extraction (OpenRE) methods usually adopt a two-stage pipeline, which simultaneously learns relation representations and assignments in the first stage, then manually labels relation for each cluster. However, unsupervised objectives struggle to explicitly optimize clusters to align with relational semantics, and the number of clusters K has to be supplied in advance. In this paper, we present a novel setting, named actively supervised clustering for OpenRE. Our insight lies in that clustering learning and relation labeling can be performed simultaneously, which provides the necessary guidance for clustering without a significant increase in human effort. Along with this setting, we propose an active labeling strategy tailored for clustering. Instead of only focusing on improving the clustering of relations that have been discovered, our strategy is encouraged to discover new relations through diversity regularization. This is particularly beneficial for long-tail relations in the real world. Experimental results show that our method is able to discover almost all relational clusters in the data and improve the SOTA methods by 13.8% and 10.6%, on two datasets respectively.
Multilingual Vision-Language Pre-training (VLP) is a promising but challenging topic due to the lack of large-scale multilingual image-text pairs. Existing works address the problem by translating English data into other languages, which is intuitive and the generated data is usually limited in form and scale. In this paper, we explore a more practical and scalable setting: weakly supervised multilingual VLP with only English image-text pairs and multilingual text corpora. We argue that the universal multilingual representation learned from texts allows the cross-modal interaction learned in English to be transferable to other languages. To this end, we propose a framework to effectively unify cross-lingual and cross-modal pre-training. For unified modeling on different data, we design an architecture with flexible modules to learn different interactions. Moreover, two unified tasks are introduced to efficiently guide the unified cross-lingual cross-modal learning. Extensive experiments demonstrate that our pre-trained model learns universal multilingual multimodal representations, allowing effective cross-lingual transfer on multimodal tasks. Code and models are available at https://github.com/FudanDISC/weakly-supervised-mVLP.
As the categories of named entities rapidly increase, the deployed NER models are required to keep updating toward recognizing more entity types, creating a demand for class-incremental learning for NER. Considering the privacy concerns and storage constraints, the standard paradigm for class-incremental NER updates the models with training data only annotated with the new classes, yet the entities from other entity classes are regarded as “Non-entity” (or “O”). In this work, we conduct an empirical study on the “Unlabeled Entity Problem” and find that it leads to severe confusion between “O” and entities, decreasing class discrimination of old classes and declining the model’s ability to learn new classes. To solve the Unlabeled Entity Problem, we propose a novel representation learning method to learn discriminative representations for the entity classes and “O”. Specifically, we propose an entity-aware contrastive learning method that adaptively detects entity clusters in “O”. Furthermore, we propose two effective distance-based relabeling strategies for better learning the old classes. We introduce a more realistic and challenging benchmark for class-incremental NER, and the proposed method achieves up to 10.62% improvement over the baseline methods.
Embedding models have shown great power in knowledge graph completion (KGC) task. By learning structural constraints for each training triple, these methods implicitly memorize intrinsic relation rules to infer missing links. However, this paper points out that the multi-hop relation rules are hard to be reliably memorized due to the inherent deficiencies of such implicit memorization strategy, making embedding models underperform in predicting links between distant entity pairs. To alleviate this problem, we present Vertical Learning Paradigm (VLP), which extends embedding models by allowing to explicitly copy target information from related factual triples for more accurate prediction. Rather than solely relying on the implicit memory, VLP directly provides additional cues to improve the generalization ability of embedding models, especially making the distant link prediction significantly easier. Moreover, we also propose a novel relative distance based negative sampling technique (ReD) for more effective optimization. Experiments demonstrate the validity and generality of our proposals on two standard benchmarks. Our code is available at https://github.com/rui9812/VLP.
Semantic matching is a mainstream paradigm of zero-shot relation extraction, which matches a given input with a corresponding label description. The entities in the input should exactly match their hypernyms in the description, while the irrelevant contexts should be ignored when matching. However, general matching methods lack explicit modeling of the above matching pattern. In this work, we propose a fine-grained semantic matching method tailored for zero-shot relation extraction. Guided by the above matching pattern, we decompose the sentence-level similarity score into the entity matching score and context matching score. Considering that not all contextual words contribute equally to the relation semantics, we design a context distillation module to reduce the negative impact of irrelevant components on context matching. Experimental results show that our method achieves higher matching accuracy and more than 10 times faster inference speed, compared with the state-of-the-art methods.
The existing supervised relation extraction methods have achieved impressive performance in a closed-set setting, in which the relations remain the same during both training and testing. In a more realistic open-set setting, unknown relations may appear in the test set. Due to the lack of supervision signals from unknown relations, a well-performing closed-set relation extractor can still confidently misclassify them into known relations. In this paper, we propose an unknown-aware training method, regularizing the model by dynamically synthesizing negative instances that can provide the missing supervision signals. Inspired by text adversarial attack, We adaptively apply small but critical perturbations to original training data,synthesizing difficult enough negative instances that are mistaken by the model as known relations, thus facilitating a compact decision boundary. Experimental results show that our method achieves SOTA unknown relation detection without compromising the classification of known relations.
Dense retrieval is widely used for entity linking to retrieve entities from large-scale knowledge bases. Mainstream techniques are based on a dual-encoder framework, which encodes mentions and entities independently and calculates their relevances via rough interaction metrics, resulting in difficulty in explicitly modeling multiple mention-relevant parts within entities to match divergent mentions. Aiming at learning entity representations that can match divergent mentions, this paper proposes a Multi-View Enhanced Distillation (MVD) framework, which can effectively transfer knowledge of multiple fine-grained and mention-relevant parts within entities from cross-encoders to dual-encoders. Each entity is split into multiple views to avoid irrelevant information being over-squashed into the mention-relevant view. We further design cross-alignment and self-alignment mechanisms for this framework to facilitate fine-grained knowledge distillation from the teacher model to the student model. Meanwhile, we reserve a global-view that embeds the entity as a whole to prevent dispersal of uniform information. Experiments show our method achieves state-of-the-art performance on several entity linking benchmarks.
Modeling political actors is at the core of quantitative political science. Existing works have incorporated contextual information to better learn the representation of political actors for specific tasks through graph models. However, they are limited to the structure and objective of training settings and can not be generalized to all politicians and other tasks. In this paper, we propose a Unified Pre-training Architecture for Political Actor Modeling based on language (UPPAM). In UPPAM, we aggregate statements to represent political actors and learn the mapping from languages to representation, instead of learning the representation of particular persons. We further design structure-aware contrastive learning and behavior-driven contrastive learning tasks, to inject multidimensional information in the political context into the mapping. In this framework, we can profile political actors from different aspects and solve various downstream tasks. Experimental results demonstrate the effectiveness and capability of generalization of our method.
Adversarial training is one of the best-performing methods in improving the robustness of deep language models. However, robust models come at the cost of high time consumption, as they require multi-step gradient ascents or word substitutions to obtain adversarial samples. In addition, these generated samples are deficient in grammatical quality and semantic consistency, which impairs the effectiveness of adversarial training. To address these problems, we introduce a novel, effective procedure for instead adversarial training with only clean data. Our procedure, distribution shift risk minimization (DSRM), estimates the adversarial loss by perturbing the input data’s probability distribution rather than their embeddings. This formulation results in a robust model that minimizes the expected global loss under adversarial attacks. Our approach requires zero adversarial samples for training and reduces time consumption by up to 70% compared to current best-performing adversarial training methods. Experiments demonstrate that DSRM considerably improves BERT’s resistance to textual adversarial attacks and achieves state-of-the-art robust accuracy on various benchmarks.
Dialogue summarization aims to condense the lengthy dialogue into a concise summary, and has recently achieved significant progress. However, the result of existing methods is still far from satisfactory. Previous works indicated that omission is a major factor in affecting the quality of summarization, but few of them have further explored the omission problem, such as how omission affects summarization results and how to detect omission, which is critical for reducing omission and improving summarization quality. Moreover, analyzing and detecting omission relies on summarization datasets with omission labels (i.e., which dialogue utterances are omitted in the summarization), which are not available in the current literature. In this paper, we propose the OLDS dataset, which provides high-quality omission labels for dialogue summarization. By analyzing this dataset, we find that a large improvement in summarization quality can be achieved by providing ground-truth omission labels for the summarization model to recover omission information, which demonstrates the importance of omission detection for omission mitigation in dialogue summarization. Therefore, we formulate an omission detection task and demonstrate our proposed dataset can support the training and evaluation of this task well. We also call for research action on omission detection based on our proposed datasets. Our dataset and codes are publicly available.
Models trained with empirical risk minimization (ERM) are revealed to easily rely on spurious correlations, resulting in poor generalization. Group distributionally robust optimization (group DRO) can alleviate this problem by minimizing the worst-case loss over pre-defined groups. While promising, in practice factors like expensive annotations and privacy preclude the availability of group labels. More crucially, when taking a closer look at the failure modes of out-of-distribution generalization, the typical procedure of reweighting in group DRO loses efficiency. Hinged on the limitations, in this work, we reformulate the group DRO framework by proposing Q-Diversity. Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization. Furthermore, a novel mixing strategy across groups is presented to diversify the under-represented groups. In a series of experiments on both synthetic and real-world text classification tasks, results demonstrate that Q-Diversity can consistently improve worst-case accuracy under different distributional shifts, outperforming state-of-the-art alternatives.
ELECTRA, the generator-discriminator pre-training framework, has achieved impressive semantic construction capability among various downstream tasks. Despite the convincing performance, ELECTRA still faces the challenges of monotonous training and deficient interaction. Generator with only masked language modeling (MLM) leads to biased learning and label imbalance for discriminator, decreasing learning efficiency; no explicit feedback loop from discriminator to generator results in the chasm between these two components, underutilizing the course learning. In this study, a multi-perspective course learning (MCL) method is proposed to fetch a many degrees and visual angles for sample-efficient pre-training, and to fully leverage the relationship between generator and discriminator. Concretely, three self-supervision courses are designed to alleviate inherent flaws of MLM and balance the label in a multi-perspective way. Besides, two self-correction courses are proposed to bridge the chasm between the two encoders by creating a “correction notebook” for secondary-supervision. Moreover, a course soups trial is conducted to solve the “tug-of-war” dynamics problem of MCL, evolving a stronger pre-trained model. Experimental results show that our method significantly improves ELECTRA’s average performance by 2.8% and 3.2% absolute points respectively on GLUE and SQuAD 2.0 benchmarks, and overshadows recent advanced ELECTRA-style models under the same settings. The pre-trained MCL model is available at https://huggingface.co/McmanusChen/MCL-base.
Pretrained language models have achieved remarkable success in various natural language processing tasks. However, pretraining has recently shifted toward larger models and larger data, which has resulted in significant computational and energy costs. In this paper, we propose Influence Subset Selection (ISS) for language model, which explicitly utilizes end-task knowledge to select a tiny subset of the pretraining corpus. Specifically, the ISS selects the samples that will provide the most positive influence on the performance of the end task. Furthermore, we design a gradient matching-based influence estimation method, which can drastically reduce the computation time of influence. With only 0.45% of the data and a three-orders-of-magnitude lower computational cost, ISS outperformed pretrained models (e.g., RoBERTa) on eight datasets covering four domains.
Existing models for named entity recognition (NER) are mainly based on large-scale labeled datasets, which always obtain using crowdsourcing. However, it is hard to obtain a unified and correct label via majority voting from multiple annotators for NER due to the large labeling space and complexity of this task. To address this problem, we aim to utilize the original multi-annotator labels directly. Particularly, we propose a CONfidence-based partial Label Learning (CONLL) method to integrate the prior confidence (given by annotators) and posterior confidences (learned by models) for crowd-annotated NER. This model learns a token- and content-dependent confidence via an Expectation–Maximization (EM) algorithm by minimizing empirical risk. The true posterior estimator and confidence estimator perform iteratively to update the true posterior and confidence respectively. We conduct extensive experimental results on both real-world and synthetic datasets, which show that our model can improve performance effectively compared with strong baselines.
Building robust deep neural networks (DNNs) against adversarial attacks is an important but challenging task. Previous defense approaches mainly focus on developing new model structures or training algorithms, but they do little to tap the potential of training instances, especially instances with robust patterns carring innate robustness. In this paper, we show that robust and non-robust instances in the training dataset, though are both important for test performance, have contrary impacts on robustness, which makes it possible to build a highly robust model by leveraging the training dataset in a more effective way. We propose a new method that can distinguish between robust instances from non-robust ones according to the model’s sensitivity to perturbations on individual instances during training. Surprisingly, we find that the model under standard training easily overfits the robust instances by relying on their simple patterns before the model completely learns their robust features. Finally, we propose a new mitigation algorithm to further release the potential of robust instances. Experimental results show that proper use of robust instances in the original dataset is a new line to achieve highly robust models.
Recently, Few-shot Named Entity Recognition has received wide attention with the growing need for NER models to learn new classes with minimized annotation costs. However, one common yet understudied situation is to transfer a model trained with coarse-grained classes to recognize fine-grained classes, such as separating a product category into sub-classes. We find that existing few-shot NER solutions are not suitable for such a situation since they do not consider the sub-class discrimination during coarse training and various granularity of new classes during few-shot learning. In this work, we introduce the Coarse-to-fine Few-shot NER (C2FNER) task and propose an effective solution. Specifically, during coarse training, we propose a cluster-based prototype margin loss to learn group-wise discriminative representations, so as to benefit fine-grained learning. Targeting various granularity of new classes, we separate the coarse classes into extra-fine clusters and propose a novel prototype retrieval and bootstrapping algorithm to retrieve representative clusters for each fine class. We then adopt a mixture prototype loss to efficiently learn the representations of fine classes. We conduct experiments on both in-domain and cross-domain C2FNER settings with various target granularity, and the proposed method shows superior performance over the baseline methods.
In real-world applications, pre-trained language models are typically deployed on the cloud, allowing clients to upload data and perform compute-intensive inference remotely. To avoid sharing sensitive data directly with service providers, clients can upload numerical representations rather than plain text to the cloud. However, recent text reconstruction techniques have demonstrated that it is possible to transform representations into original words, suggesting that privacy risk remains. In this paper, we propose TextObfuscator, a novel framework for protecting inference privacy by applying random perturbations to clustered representations. The random perturbations make the representations indistinguishable from surrounding clustered representations, thus obscuring word information while retaining the original word functionality. To achieve this, we utilize prototypes to learn clustered representation, where tokens of similar functionality are encouraged to be closer to the same prototype during training. Additionally, we design different methods to find prototypes for token-level and sentence-level tasks, which can improve performance by incorporating semantic and task information. Experimental results on token and sentence classification tasks show that TextObfuscator achieves improvement over compared methods without increasing inference cost.
Deep neural networks (DNNs) have been proven to be sensitive towards perturbations on input samples, and previous works highlight that adversarial samples are even more vulnerable than normal ones. In this work, this phenomenon is illustrated frWe first show that adversarial samples locate in steep and narrow local minima of the loss landscape (high sharpness) while normal samples, which differs distinctly from adversarial ones, reside in the loss surface that is more flatter (low sharpness).om the perspective of sharpness via visualizing the input loss landscape of models. Based on this, we propose a simple and effective sharpness-based detector to distinct adversarial samples by maximizing the loss increment within the region where the inference sample is located. Considering that the notion of sharpness of a loss landscape is relative, we further propose an adaptive optimization strategy in an attempt to fairly compare the relative sharpness among different samples. Experimental results show that our approach can outperform previous detection methods by large margins (average +6.6 F1 score) for four advanced attack strategies considered in this paper across three text classification tasks.
Task embeddings are task-specific vectors designed to construct a semantic space of tasks, which can be used to predict the most transferable source task for a given target task via the similarity between task embeddings. However, existing methods use optimized parameters and representations as task embeddings, resulting in substantial computational complexity and storage requirements. In this work, we draw inspiration from the operating mechanism of deep neural networks (DNNs) and biological brains, where neuronal activations are sparse and task-specific, and we use the connectivity patterns of neurons as a unique identifier associated with the task. The proposed method learns to assign importance masks for sub-structures of DNNs, and accordingly indicate the task-specific connectivity patterns. In addition to the storage advantages brought by the binary masking mechanism and structured sparsity, the early-bird nature of the sparse optimization process can deliver an efficient computation advantage. Experiments show that our method consistently outperforms other baselines in predicting inter-task transferability across data regimes and transfer settings, while keeping high efficiency in computation and storage.
Prompt-based fine-tuning has boosted the performance of Pre-trained Language Models(PLMs) on few-shot Natural Language Understanding (NLU) tasks by employing task-specific prompts. Yet, PLMsare unfamiliar with prompt-style expressionsduring pre-training, which limits the few-shotlearning performance on downstream tasks. It would be desirable if the models can stimulate prompting knowledge while adaptation to specific NLU tasks. We present the Adversarial Knowledge Stimulated Contrastive Prompting (AKSCP) framework, leading to better few-shot NLU tasks for language models by implicitly stimulate knowledge from pretrained language model. In AKSCP, a novel paradigm Cloze-driven prompt is proposed for joint prompt tuning across word cloze task and prompt-based learning, forcing PLMs to stimulate prompting knowledge. We further design an Adversarial Contrastive learning method to improve the generalization ability of PLM for different downstream tasks. Experiments over a variety of NLU tasks show that AKSCP consistently outperforms state-of-the-arts for prompt-based fine-tuning.
Detecting adversarial samples that are carefully crafted to fool the model is a critical step to socially-secure applications. However, existing adversarial detection methods require access to sufficient training data, which brings noteworthy concerns regarding privacy leakage and generalizability. In this work, we validate that the adversarial sample generated by attack algorithms is strongly related to a specific vector in the high-dimensional inputs. Such vectors, namely UAPs (Universal Adversarial Perturbations), can be calculated without original training data. Based on this discovery, we propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs. Experimental results show that our method achieves competitive detection performance on various text classification tasks, and maintains an equivalent time consumption to normal inference.
Recently, Target-oriented Multimodal Sentiment Classification (TMSC) has gained significant attention among scholars. However, current multimodal models have reached a performance bottleneck. To investigate the causes of this problem, we perform extensive empirical evaluation and in-depth analysis of the datasets to answer the following questions: **Q1**: Are the modalities equally important for TMSC? **Q2**: Which multimodal fusion modules are more effective? **Q3**: Do existing datasets adequately support the research? Our experiments and analyses reveal that the current TMSC systems primarily rely on the textual modality, as most of targets’ sentiments can be determined *solely* by text. Consequently, we point out several directions to work on for the TMSC task in terms of model design and dataset construction. The code and data can be found in https://github.com/Junjie-Ye/RethinkingTMSC.
Abstractive related work generation has attracted increasing attention in generating coherent related work that helps readers grasp the current research. However, most existing models ignore the inherent causality during related work generation, leading to spurious correlations which downgrade the models’ generation quality and generalizability. In this study, we argue that causal intervention can address such limitations and improve the quality and coherence of generated related work. To this end, we propose a novel Causal Intervention Module for Related Work Generation (CaM) to effectively capture causalities in the generation process. Specifically, we first model the relations among the sentence order, document (reference) correlations, and transitional content in related work generation using a causal graph. Then, to implement causal interventions and mitigate the negative impact of spurious correlations, we use do-calculus to derive ordinary conditional probabilities and identify causal effects through CaM. Finally, we subtly fuse CaM with Transformer to obtain an end-to-end related work generation framework. Extensive experiments on two real-world datasets show that CaM can effectively promote the model to learn causal relations and thus produce related work of higher quality and coherence.
Reinforcement learning from human feedback serves as a crucial bridge, aligning large language models with human and societal values. This alignment requires a vast corpus of human feedback to learn a reward model, which is subsequently used to finetune language models. However, we have identified that the reward model often finds shortcuts to bypass its intended objectives, misleadingly assuming that humans prefer longer responses. The emergence of length bias often induces the model to favor longer outputs, yet it doesn’t equate to an increase in helpful information within these outputs. In this paper, we propose an innovative solution, applying the Product-of-Experts (PoE) technique to separate reward modeling from the influence of sequence length. In our framework, the main expert concentrates on understanding human intents, while the biased expert targets the identification and capture of length bias. To further enhance the learning of bias, we introduce perturbations into the bias-focused expert, disrupting the flow of semantic information. Experimental results validate the effectiveness of our approach, indicating that language model performance is improved, irrespective of sequence length.
Pre-trained language models (PLMs) are often deployed as cloud services, enabling users to upload textual data and perform inference remotely. However, users’ personal text often contains sensitive information, and sharing such data directly with the service providers can lead to serious privacy leakage. To address this problem, we introduce a novel privacy-preserving inference framework called MixPi, which prevents plaintext leakage during the inference phase. Inspired by k-anonymity, MixPi aims to obfuscate a user’s private input by mixing it with multiple other inputs, thereby confounding potential privacy attackers. To achieve this, our approach involves: (1) proposing a novel encryption module, Privacy Mixer, which encrypts input from three distinct dimensions: mixing, representation, and position. (2) adopting a pre-trained Multi-input Multi-output network to handle mixed representations and obtain multiple predictions. (3) employing a Privacy Demixer to ensure only the user can decrypt the real output among the multiple predictions. Furthermore, we explore different ways to automatically generate synthetic inputs required for mixing. Experimental results on token and sentence classification tasks demonstrate that MixPi greatly surpasses existing privacy-preserving methods in both performance and privacy.
The inductive inference of the knowledge graph aims to complete the potential relations between the new unknown entities in the graph. Most existing methods are based on entity-independent features such as graph structure information and relationship information to inference. However, the neighborhood of these new entities is often too sparse to obtain enough information to build these features effectively. In this work, we propose a knowledge graph inductive inference method that fuses ontology information. Based on the enclosing subgraph, we bring in feature embeddings of concepts corresponding to entities to learn the semantic information implicit in the ontology. Considering that the ontology information of entities may be missing, we build a type constraint regular loss to explicitly model the semantic connections between entities and concepts, and thus capture the missing concepts of entities. Experimental results show that our approach significantly outperforms large language models like ChatGPT on two benchmark datasets, YAGO21K-610 and DB45K-165, and improves the MRR metrics by 15.4% and 44.1%, respectively, when compared with the state-of-the-art methods.
Generative retrieval, which is a new advanced paradigm for document retrieval, has recently attracted research interests, since it encodes all documents into the model and directly generates the retrieved documents. However, its power is still underutilized since it heavily relies on the “preprocessed” document identifiers (docids), thus limiting its retrieval performance and ability to retrieve new documents. In this paper, we propose a novel fully end-to-end retrieval paradigm. It can not only end-to-end learn the best docids for existing and new documents automatically via a semantic indexing module, but also perform end-to-end document retrieval via an encoder-decoder-based generative model, namely Auto Search Indexer (ASI). Besides, we design a reparameterization mechanism to combine the above two modules into a joint optimization framework. Extensive experimental results demonstrate the superiority of our model over advanced baselines on both public and industrial datasets and also verify the ability to deal with new documents.
Representation learning on graph has been demonstrated to be a powerful tool for solving real-world problems. Text-attributed graph carries both semantic and structural information among different types of graphs. Existing works have paved the way for knowledge extraction of this type of data by leveraging language models or graph neural networks or combination of them. However, these works suffer from issues like underutilization of relationships between nodes or words or unaffordable memory cost. In this paper, we propose a Node Representation Update Pre-training Architecture based on Co-modeling Text and Graph (NRUP). In NRUP, we construct a hierarchical text-attributed graph that incorporates both original nodes and word nodes. Meanwhile, we apply four self-supervised tasks for different level of constructed graph. We further design the pre-training framework to update the features of nodes during training epochs. We conduct the experiment on the benchmark dataset ogbn-arxiv. Our method achieves outperformance compared to baselines, fully demonstrating its validity and generalization.
Reports of human-like behaviors in foundation models are growing, with psychological theories providing enduring tools to investigate these behaviors. However, current research tends to directly apply these human-oriented tools without verifying the faithfulness of their outcomes. In this paper, we introduce a framework, RealBehavior, which is designed to characterize the humanoid behaviors of models faithfully. Beyond simply measuring behaviors, our framework assesses the faithfulness of results based on reproducibility, internal and external consistency, and generalizability. Our findings suggest that a simple application of psychological tools cannot faithfully characterize all human-like behaviors. Moreover, we discuss the impacts of aligning models with human and social values, arguing for the necessity of diversifying alignment objectives to prevent the creation of models with restricted characteristics.
Benefiting from massive corpora and advanced hardware, large language models (LLMs) exhibit remarkable capabilities in language understanding and generation. However, their performance degrades in scenarios where multiple tasks are encountered sequentially, also known as catastrophic forgetting. In this paper, we propose orthogonal low-rank adaptation (O-LoRA), a simple and efficient approach for continual learning in language models, effectively mitigating catastrophic forgetting while learning new tasks. Specifically, O-LoRA learns tasks in different (low-rank) vector subspaces that are kept orthogonal to each other in order to minimize interference. Our method induces only marginal additional parameter costs and requires no user data storage for replay. Experimental results on continual learning benchmarks show that our method outperforms state-of-the-art methods. Furthermore, compared to previous approaches, our method excels in preserving the generalization ability of LLMs on unseen tasks.
To enhance the multi-step reasoning capabilities of large language models, researchers have extensively explored prompting methods, notably the Chain-of-Thought (CoT) method which explicitly elicits human-like rationales. However, they have inadvertently overlooked the potential of enhancing model reasoning performance by formulating higher-quality problems. In this work, we start from the problem side and propose Self-Polish (SP), a novel method that facilitates the model’s reasoning by guiding it to progressively refine the given problems to be more comprehensible and solvable. We also explore several automatic prompting varients and propose the Self-Polish prompt bank for the community. SP is orthogonal to all other prompting methods of answer/reasoning side like CoT, allowing for seamless integration with state-of-the-art techniques for further improvement. Thorough experiments show that the proposed method attains notable and consistent effectiveness on five reasoning benchmarks across different models. Furthermore, our method also showcases impressive performance on robustness evaluation. Codes and prompts are available at https://github.com/WooooDyy/Self-Polish.
Clickbait posts tend to spread inaccurate or misleading information to manipulate people’s attention and emotions, which greatly harms the credibility of social media. Existing clickbait detection models rely on analyzing the objective semantics in posts or correlating posts with article content only. However, these models fail to identify and exploit the manipulation intention of clickbait from a user’s subjective perspective, leading to limited capability to explore comprehensive clues of clickbait. To address such a issue, we propose a multiview clickbait detection model, named MCDM, to model subjective and objective preferences simultaneously. MCDM introduces two novel complementary modules for modeling subjective feeling and objective content relevance, respectively. The subjective feeling module adopts a user-centric approach to capture subjective features of posts, such as language patterns and emotional inclinations. The objective module explores news elements from posts and models article content correlations to capture objective clues for clickbait detection. Extensive experimental results on two real-world datasets show that our proposed MCDM outperforms state-of-the-art approaches for clickbait detection, verifying the effectiveness of integrating subjective and objective preferences for detecting clickbait.
Large language models (LLMs) have exhibited considerable cross-lingual generalization abilities, whereby they implicitly transfer knowledge across languages. However, the transfer is not equally successful for all languages, especially for low-resource ones, which poses an ongoing challenge. It is unclear whether we have reached the limits of implicit cross-lingual generalization and if explicit knowledge transfer is viable. In this paper, we investigate the potential for explicitly aligning conceptual correspondence between languages to enhance cross-lingual generalization. Using the syntactic aspect of language as a testbed, our analyses of 43 languages reveal a high degree of alignability among the spaces of structural concepts within each language for both encoder-only and decoder-only LLMs. We then propose a meta-learning-based method to learn to align conceptual spaces of different languages, which facilitates zero-shot and few-shot generalization in concept classification and also offers insights into the cross-lingual in-context learning phenomenon. Experiments on syntactic analysis tasks show that our approach achieves competitive results with state-of-the-art methods and narrows the performance gap between languages, particularly benefiting those with limited resources.
Online community is composed of communities, users, and user-generated textual content, with rich information that can help us solve social problems. Previous research hasn’t fully utilized these three components and the relationship among them. What’s more, they can’t adapt to a wide range of downstream tasks. To solve these problems, we focus on a framework that simultaneously considers communities, users, and texts. And it can easily connect with a variety of downstream tasks related to social media. Specifically, we use a ternary heterogeneous graph to model online communities. Text reconstruction and edge generation are used to learn structural and semantic knowledge among communities, users, and texts. By leveraging this pre-trained model, we achieve promising results across multiple downstream tasks, such as violation detection, sentiment analysis, and community recommendation. Our exploration will improve online community modeling.
Large language models (LLMs) exhibit impressive emergent abilities in natural language processing, but their democratization is hindered due to huge computation requirements and closed-source nature. Recent research on advancing open-source smaller LMs by distilling knowledge from black-box LLMs has obtained promising results in the instruction-following ability. However, the reasoning ability which is more challenging to foster, is relatively rarely explored. In this paper, we propose a tailored learning approach to distill such reasoning ability to smaller LMs to facilitate the democratization of the exclusive reasoning ability. In contrast to merely employing LLM as a data annotator, we exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm. This paradigm enables the student to expose its deficiencies to the black-box teacher who then can provide customized training data in return. Further, to exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes. The learning from self-reflection and LLM are all tailored to the student’s learning status, thanks to the seamless integration with the multi-round learning paradigm. Comprehensive experiments and analysis on mathematical and commonsense reasoning tasks demonstrate the effectiveness of our method. The code will be available at https://github.com/Raibows/Learn-to-Reason.
Recently, many studies have illustrated the robustness problem of Named Entity Recognition (NER) systems: the NER models often rely on superficial entity patterns for predictions, without considering evidence from the context. Consequently, even state-of-the-art NER models generalize poorly to out-of-domain scenarios when out-of-distribution (OOD) entity patterns are introduced. Previous research attributes the robustness problem to the existence of NER dataset bias, where simpler and regular entity patterns induce shortcut learning. In this work, we bring new insights into this problem by comprehensively investigating the NER dataset bias from a dataset difficulty view. We quantify the entity-context difficulty distribution in existing datasets and explain their relationship with model robustness. Based on our findings, we explore three potential ways to de-bias the NER datasets by altering entity-context distribution, and we validate the feasibility with intensive experiments. Finally, we show that the de-biased datasets can transfer to different models and even benefit existing model-based robustness-improving methods, indicating that building more robust datasets is fundamental for building more robust NER systems.
Large Language Models (LLMs) are popular for their impressive abilities, but the need for model-specific fine-tuning or task-specific prompt engineering can hinder their generalization. We propose UPRISE (Universal Prompt Retrieval for Improving zero-Shot Evaluation), which tunes a lightweight and versatile retriever that automatically retrieves prompts for a given zero-shot task input. Specifically, we demonstrate universality in a cross-task and cross-model scenario: the retriever is tuned on diverse tasks, but tested on unseen task types; we use a small frozen LLM, GPT-Neo-2.7B, for tuning the retriever, but test the retriever on different LLMs of much larger scales, such as BLOOM-7.1B, OPT-66B and GPT3-175B. Additionally, we show that UPRISE mitigates the hallucination problem in our experiments with ChatGPT, suggesting its potential to improve even the strongest LLMs. Our model and code are available at https://github.com/microsoft/LMOps.
Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents.
The knowledge graph is a structure to store and represent knowledge, and recent studies have discussed its capability to assist language models for various applications. Some variations of knowledge graphs aim to record arguments and their relations for computational argumentation tasks. However, many must simplify semantic types to fit specific schemas, thus losing flexibility and expression ability. In this paper, we propose the **Hi**erarchical **Ar**gumentation **G**raph (Hi-ArG), a new structure to organize arguments. We also introduce two approaches to exploit Hi-ArG, including a text-graph multi-modal model GreaseArG and a new pre-training framework augmented with graph information. Experiments on two argumentation tasks have shown that after further pre-training and fine-tuning, GreaseArG supersedes same-scale language models on these tasks, while incorporating graph information during further pre-training can also improve the performance of vanilla language models. Code for this paper is available at <https://github.com/ljcleo/Hi-ArG>.
Counter-argument generation—a captivating area in computational linguistics—seeks to craft statements that offer opposing views. While most research has ventured into paragraph-level generation, sentence-level counter-argument generation beckons with its unique constraints and brevity-focused challenges. Furthermore, the diverse nature of counter-arguments poses challenges for evaluating model performance solely based on n-gram-based metrics. In this paper, we present the ArgTersely benchmark for sentence-level counter-argument generation, drawing from a manually annotated dataset from the ChangeMyView debate forum. We also propose Arg-LlaMA for generating high-quality counter-argument. For better evaluation, we trained a BERT-based evaluator Arg-Judge with human preference data. We conducted comparative experiments involving various baselines such as LlaMA, Alpaca, GPT-3, and others. The results show the competitiveness of our proposed framework and evaluator in counter-argument generation tasks. Code and data are available at https://github.com/amazingljy1206/ArgTersely.
Graph-based techniques have gained traction for representing and analyzing data in various natural language processing (NLP) tasks. Knowledge graph-based language representation models have shown promising results in leveraging domain-specific knowledge for NLP tasks, particularly in the biomedical NLP field. However, such models have limitations, including knowledge noise and neglect of contextual relationships, leading to potential semantic errors and reduced accuracy. To address these issues, this paper proposes two novel methods. The first method combines knowledge graph-based language model with nearest-neighbor models to incorporate semantic and category information from neighboring instances. The second method involves integrating knowledge graph-based language model with graph neural networks (GNNs) to leverage feature information from neighboring nodes in the graph. Experiments on relation extraction (RE) and classification tasks in English and Chinese language datasets demonstrate significant performance improvements with both methods, highlighting their potential for enhancing the performance of language models and improving NLP applications in the biomedical domain.
The recognition of dataset names is a critical task for automatic information extraction in scientific literature, enabling researchers to understand and identify research opportunities. However, existing corpora for dataset mention detection are limited in size and naming diversity. In this paper, we introduce the Dataset Mentions Detection Dataset (DMDD), the largest publicly available corpus for this task. DMDD consists of the DMDD main corpus, comprising 31,219 scientific articles with over 449,000 dataset mentions weakly annotated in the format of in-text spans, and an evaluation set, which comprises 450 scientific articles manually annotated for evaluation purposes. We use DMDD to establish baseline performance for dataset mention detection and linking. By analyzing the performance of various models on DMDD, we are able to identify open problems in dataset mention detection. We invite the community to use our dataset as a challenge to develop novel dataset mention detection models.
Prompt-based methods have been successfully applied in sentence-level few-shot learning tasks, mostly owing to the sophisticated design of templates and label words. However, when applied to token-level labeling tasks such as NER, it would be time-consuming to enumerate the template queries over all potential entity spans. In this work, we propose a more elegant method to reformulate NER tasks as LM problems without any templates. Specifically, we discard the template construction process while maintaining the word prediction paradigm of pre-training models to predict a class-related pivot word (or label word) at the entity position. Meanwhile, we also explore principled ways to automatically search for appropriate label words that the pre-trained models can easily adapt to. While avoiding the complicated template-based process, the proposed LM objective also reduces the gap between different objectives used in pre-training and fine-tuning, thus it can better benefit the few-shot performance. Experimental results demonstrate the effectiveness of the proposed method over bert-tagger and template-based method under few-shot settings. Moreover, the decoding speed of the proposed method is up to 1930.12 times faster than the template-based method.
Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization. Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.
NER model has achieved promising performance on standard NER benchmarks. However, recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary(OOV) entity recognition. In this work, we propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective. The proposed approach contains two mutual information based training objectives: i) generalizing information maximization, which enhances representation via deep understanding of context and entity surface forms; ii) superfluous information minimization, which discourages representation from rotate memorizing entity names or exploiting biased cues in data. Experiments on various settings and datasets demonstrate that it achieves better performance in predicting OOV entities.
Adversarial robustness has attracted much attention recently, and the mainstream solution is adversarial training. However, the tradition of generating adversarial perturbations for each input embedding (in the settings of NLP) scales up the training computational complexity by the number of gradient steps it takes to obtain the adversarial samples. To address this problem, we leverage Flooding method which primarily aims at better generalization and we find promising in defending adversarial attacks. We further propose an effective criterion to bring hyper-parameter-dependent flooding into effect with a narrowed-down search space by measuring how the gradient steps taken within one epoch affect the loss of each batch. Our approach requires zero adversarial sample for training, and its time consumption is equivalent to fine-tuning, which can be 2-15 times faster than standard adversarial training. We experimentally show that our method improves BERT’s resistance to textual adversarial attacks by a large margin, and achieves state-of-the-art robust accuracy on various text classification and GLUE tasks.
Multi-hop question generation focuses on generating complex questions that require reasoning over multiple pieces of information of the input passage. Current models with state-of-the-art performance have been able to generate the correct questions corresponding to the answers. However, most models can not ensure the complexity of generated questions, so they may generate shallow questions that can be answered without multi-hop reasoning. To address this challenge, we propose the CQG, which is a simple and effective controlled framework. CQG employs a simple method to generate the multi-hop questions that contain key entities in multi-hop reasoning chains, which ensure the complexity and quality of the questions. In addition, we introduce a novel controlled Transformer-based decoder to guarantee that key entities appear in the questions. Experiment results show that our model greatly improves performance, which also outperforms the state-of-the-art model about 25% by 5 BLEU points on HotpotQA.
Dataset bias has attracted increasing attention recently for its detrimental effect on the generalization ability of fine-tuned models. The current mainstream solution is designing an additional shallow model to pre-identify biased instances. However, such two-stage methods scale up the computational complexity of training process and obstruct valid feature information while mitigating bias.To address this issue, we utilize the representation normalization method which aims at disentangling the correlations between features of encoded sentences. We find it also promising in eliminating the bias problem by providing isotropic data distribution. We further propose Kernel-Whitening, a Nystrom kernel approximation method to achieve more thorough debiasing on nonlinear spurious correlations. Our framework is end-to-end with similar time consumption to fine-tuning. Experiments show that Kernel-Whitening significantly improves the performance of BERT on out-of-distribution datasets while maintaining in-distribution accuracy.
Multilingual BERT (mBERT) has demonstrated considerable cross-lingual syntactic ability, whereby it enables effective zero-shot cross-lingual transfer of syntactic knowledge. The transfer is more successful between some languages, but it is not well understood what leads to this variation and whether it fairly reflects difference between languages. In this work, we investigate the distributions of grammatical relations induced from mBERT in the context of 24 typologically different languages. We demonstrate that the distance between the distributions of different languages is highly consistent with the syntactic difference in terms of linguistic formalisms. Such difference learnt via self-supervision plays a crucial role in the zero-shot transfer performance and can be predicted by variation in morphosyntactic properties between languages. These results suggest that mBERT properly encodes languages in a way consistent with linguistic diversity and provide insights into the mechanism of cross-lingual transfer.
Adversarial training is one of the most powerful methods to improve the robustness of pre-trained language models (PLMs). However, this approach is typically more expensive than traditional fine-tuning because of the necessity to generate adversarial examples via gradient descent. Delving into the optimization process of adversarial training, we find that robust connectivity patterns emerge in the early training phase (typically 0.15~0.3 epochs), far before parameters converge. Inspired by this finding, we dig out robust early-bird tickets (i.e., subnetworks) to develop an efficient adversarial training method: (1) searching for robust tickets with structured sparsity in the early stage; (2) fine-tuning robust tickets in the remaining time. To extract the robust tickets as early as possible, we design a ticket convergence metric to automatically terminate the searching process. Experiments show that the proposed efficient adversarial training method can achieve up to 7× ∼ 13 × training speedups while maintaining comparable or even better robustness compared to the most competitive state-of-the-art adversarial training methods.
Recently, more and more pre-trained language models are released as a cloud service. It allows users who lack computing resources to perform inference with a powerful model by uploading data to the cloud. The plain text may contain private information, as the result, users prefer to do partial computations locally and upload intermediate representations to the cloud for subsequent inference.However, recent studies have shown that intermediate representations can also be recovered to plain text with reasonable accuracy, thus the risk of privacy leakage still exists. To address this issue, we propose TextFusion, a novel method for preserving inference privacy.Specifically, we train a Fusion Predictor to dynamically fuse token representations, which hides multiple private token representations behind an unrecognizable one.Furthermore, an adversarial training regime is employed to privatize these representations. In this way, the cloud only receives incomplete and perturbed representations, making it difficult to accurately recover the complete plain text.The experimental results on diverse classification tasks show that our approach can effectively preserve inference privacy without significantly sacrificing performance in different scenarios.
We propose PromptBERT, a novel contrastive learning method for learning better sentence representation. We firstly analysis the drawback of current sentence embedding from original BERT and find that it is mainly due to the static token embedding bias and ineffective BERT layers. Then we propose the first prompt-based sentence embeddings method and discuss two prompt representing methods and three prompt searching methods to make BERT achieve better sentence embeddings .Moreover, we propose a novel unsupervised training objective by the technology of template denoising, which substantially shortens the performance gap between the supervised and unsupervised settings. Extensive experiments show the effectiveness of our method. Compared to SimCSE, PromptBert achieves 2.29 and 2.58 points of improvement based on BERT and RoBERTa in the unsupervised setting.
Bilingual lexicon induction induces the word translations by aligning independently trained word embeddings in two languages. Existing approaches generally focus on minimizing the distances between words in the aligned pairs, while suffering from low discriminative capability to distinguish the relative orders between positive and negative candidates. In addition, the mapping function is globally shared by all words, whose performance might be hindered by the deviations in the distributions of different languages. In this work, we propose a novel ranking-oriented induction model RAPO to learn personalized mapping function for each word. RAPO is capable of enjoying the merits from the unique characteristics of a single word and the cross-language isomorphism simultaneously. Extensive experimental results on public datasets including both rich-resource and low-resource languages demonstrate the superiority of our proposal. Our code is publicly available in https://github.com/Jlfj345wf/RAPO.
Proof generation focuses on deductive reasoning: given a hypothesis and a set of theories, including some supporting facts and logical rules expressed in natural language, the model generates a proof tree indicating how to deduce the hypothesis from given theories.Current models with state-of-the-art performance employ the stepwise method that adds an individual node to the proof step-by-step.However, these methods actually focus on generating several proof paths rather than a whole tree.During generation, they focus on the most relevant areas of the currently generated node while neglecting the rest of the proof tree. To address this problem, we propose ProofInfer, which generates the proof tree via iterative hierarchical inference.At each step, ProofInfer adds the entire layer to the proof, where all nodes in this layer are generated simultaneously. Since the conventional autoregressive generation architecture cannot simultaneously predict multiple nodes, ProofInfer employs text-to-text paradigm.To this end, we propose a divide-and-conquer algorithm to encode the proof tree as the plain text without losing structure information.Experimental results show that ProofInfer significantly improves performance on several widely-used datasets.In addition, ProofInfer still performs well with data-limited, achieving comparable performance to the state-of-the-art model with about 40% of the training data.
Text semantic matching is a fundamental task that has been widely used in various scenarios, such as community question answering, information retrieval, and recommendation. Most state-of-the-art matching models, e.g., BERT, directly perform text comparison by processing each word uniformly. However, a query sentence generally comprises content that calls for different levels of matching granularity. Specifically, keywords represent factual information such as action, entity, and event that should be strictly matched, while intents convey abstract concepts and ideas that can be paraphrased into various expressions. In this work, we propose a simple yet effective training strategy for text semantic matching in a divide-and-conquer manner by disentangling keywords from intents. Our approach can be easily combined with pre-trained language models (PLM) without influencing their inference efficiency, achieving stable performance improvements against a wide range of PLMs on three benchmarks.
Automatic movie narration generation and narration grounding are very important to provide a true movie experience for the blind and visually impaired. To tell the movie story well, it is necessary to mention plot-related details (such as character names) and keep the narrations in a plot coherent. Taking these two points into consideration, we construct a Chinese large-scale video benchmark from 101 movies for Movie Understanding and Narrating (MovieUN) to support the Movie Clip Narrating (MCN) task and Temporal Narration Grounding (TNG) task. We split movies in MovieUN into movie clips according to plots, and pair them with corresponding narrations provided by the movie narrators. Ultimately, the TNG task involves 3,253 long video clips totaling 179 hours. The MCN task contains 33,060 video clips totaling 105 hours. We benchmark state-of-the-art video captioning models and temporal grounding models in MCN and TNG tasks, respectively. Furthermore, to accurately comprehend plots of different characters, we propose methods to incorporate portraits of actors as external knowledge in both tasks. The experiment results demonstrate the effectiveness of our proposed methods. The dataset and codes are released at https://github.com/yuezih/MovieUN.
Discriminative pre-trained language models, such as ELECTRA, have achieved promising performances in a variety of general tasks. However, these generic pre-trained models struggle to capture domain-specific knowledge of domain-related tasks. In this work, we propose a novel domain-adaptation method for ELECTRA, which can dynamically select domain-specific tokens and guide the discriminator to emphasize them, without introducing new training parameters. We show that by re-weighting the losses of domain-specific tokens, ELECTRA can be effectively adapted to different domains. The experimental results in both computer science and biomedical domains show that the proposed method can achieve state-of-the-art results on the domain-related tasks.
Sentiment analysis is increasingly viewed as a vital task both from an academic and a commercial standpoint. In this paper, we focus on the structured sentiment analysis task that is released on SemEval-2022 Task 10. The task aims to extract the structured sentiment information (e.g., holder, target, expression and sentiment polarity) in a text. We propose a simple and unified model for both the monolingual and crosslingual structured sentiment analysis tasks. We translate this task into an event extraction task by regrading the expression as the trigger word and the other elements as the arguments of the event. Particularly, we first extract the expression by judging its start and end indices. Then, to consider the expression, we design a conditional layer normalization algorithm to extract the holder and target based on the extracted expression. Finally, we infer the sentiment polarity based on the extracted structured information. Pre-trained language models are utilized to obtain the text representation. We conduct the experiments on seven datasets in five languages. It attracted 233 submissions in monolingual subtask and crosslingual subtask from 32 teams. Finally, we obtain the top 5 place on crosslingual tasks.
Multi-hop reasoning requires aggregating multiple documents to answer a complex question. Existing methods usually decompose the multi-hop question into simpler single-hop questions to solve the problem for illustrating the explainable reasoning process. However, they ignore grounding on the supporting facts of each reasoning step, which tends to generate inaccurate decompositions. In this paper, we propose an interpretable stepwise reasoning framework to incorporate both single-hop supporting sentence identification and single-hop question generation at each intermediate step, and utilize the inference of the current hop for the next until reasoning out the final result. We employ a unified reader model for both intermediate hop reasoning and final hop inference and adopt joint optimization for more accurate and robust multi-hop reasoning. We conduct experiments on two benchmark datasets HotpotQA and 2WikiMultiHopQA. The results show that our method can effectively boost performance and also yields a better interpretable reasoning process without decomposition supervision.
Event argument extraction (EAE) aims to extract arguments with given roles from texts, which have been widely studied in natural language processing. Most previous works have achieved good performance in specific EAE datasets with dedicated neural architectures. Whereas, these architectures are usually difficult to adapt to new datasets/scenarios with various annotation schemas or formats. Furthermore, they rely on large-scale labeled data for training, which is unavailable due to the high labelling cost in most cases. In this paper, we propose a multi-format transfer learning model with variational information bottleneck, which makes use of the information especially the common knowledge in existing datasets for EAE in new datasets. Specifically, we introduce a shared-specific prompt framework to learn both format-shared and format-specific knowledge from datasets with different formats. In order to further absorb the common knowledge for EAE and eliminate the irrelevant noise, we integrate variational information bottleneck into our architecture to refine the shared representation. We conduct extensive experiments on three benchmark datasets, and obtain new state-of-the-art performance on EAE.
Event argument extraction (EAE) aims to extract arguments with given roles from texts, which have been widely studied in natural language processing. Most previous works have achieved good performance in specific EAE datasets with dedicated neural architectures. Whereas, these architectures are usually difficult to adapt to new datasets/scenarios with various annotation schemas or formats. Furthermore, they rely on large-scale labeled data for training, which is unavailable due to the high labelling cost in most cases. In this paper, we propose a multi-format transfer learning model with variational information bottleneck, which makes use of the information especially the common knowledge in existing datasets for EAE in new datasets. Specifically, we introduce a shared-specific prompt framework to learn both format-shared and format-specific knowledge from datasets with different formats. In order to further absorb the common knowledge for EAE and eliminate the irrelevant noise, we integrate variational information bottleneck into our architecture to refine the shared representation. We conduct extensive experiments on three benchmark datasets, and obtain new state-of-the-art performance on EAE.
The introduction of multimodal information and pretraining technique significantly improves entity recognition from visually-rich documents. However, most of the existing methods pay unnecessary attention to irrelevant regions of the current document while ignoring the potentially valuable information in related documents. To deal with this problem, this work proposes a cross-document semantic enhancement method, which consists of two modules: 1) To prevent distractions from irrelevant regions in the current document, we design a learnable attention mask mechanism, which is used to adaptively filter redundant information in the current document. 2) To further enrich the entity-related context, we propose a cross-document information awareness technique, which enables the model to collect more evidence across documents to assist in prediction. The experimental results on two documents understanding benchmarks covering eight languages demonstrate that our method outperforms the SOTA methods.
Natural language understanding (NLU) models tend to rely on spurious correlations (i.e., dataset bias) to achieve high performance on in-distribution datasets but poor performance on out-of-distribution ones. Most of the existing debiasing methods often identify and weaken these samples with biased features (i.e., superficial surface features that cause such spurious correlations). However, down-weighting these samples obstructs the model in learning from the non-biased parts of these samples. To tackle this challenge, in this paper, we propose to eliminate spurious correlations in a fine-grained manner from a feature space perspective. Specifically, we introduce Random Fourier Features and weighted re-sampling to decorrelate the dependencies between features to mitigate spurious correlations. After obtaining decorrelated features, we further design a mutual-information-based method to purify them, which forces the model to learn features that are more relevant to tasks. Extensive experiments on two well-studied NLU tasks demonstrate that our method is superior to other comparative approaches.
Existing works on rumor resolution have shown great potential in recognizing word appearance and user participation. However, they ignore the intrinsic propagation mechanisms of rumors and present poor adaptive ability when unprecedented news emerges. To exploit the fine-grained rumor diffusion patterns and generalize rumor resolution methods, we formulate a predecessor task to identify triggering posts, and then exploit their characteristics to facilitate rumor verification. We design a tree-structured annotation interface and extend PHEME dataset with labels on the message level. Data analysis shows that triggers play a critical role in verifying rumors and present similar lingual patterns across irrelevant events. We propose a graph-based model considering the direction and interaction of information flow to implement role-aware rumor resolution. Experimental results demonstrate the effectiveness of our proposed model and progressive scheme.
Adversarial training, which minimizes the loss of adversarially perturbed examples, has received considerable attention. However, these methods require modifying all model parameters and optimizing the model from scratch, which is parameter inefficient and unfriendly to the already deployed models. As an alternative, we propose a pluggable defense module PlugAT, to provide robust predictions by adding a few trainable parameters to the model inputs while keeping the original model frozen. To reduce the potential side effects of using defense modules, we further propose a novel forgetting restricted adversarial training, which filters out bad adversarial examples that impair the performance of original ones. The PlugAT-equipped BERT model substantially improves robustness over several strong baselines on various text classification tasks, whilst training only 9.1% parameters. We observe that defense modules trained under the same model architecture have domain adaptation ability between similar text classification datasets.
Question generation over knowledge bases (KBQG) aims at generating natural questions about a subgraph, which can be answered by a given answer entity. Existing KBQG models still face two main challenges: (1) Most models often focus on the most relevant part of the answer entity, while neglecting the rest of the subgraph. (2) There are a large number of out-of-vocabulary (OOV) predicates in real-world scenarios, which are hard to adapt for most KBQG models. To address these challenges, we propose LFKQG, a controlled generation framework for Question Generation over Knowledge Bases. (1) LFKQG employs a simple controlled generation method to generate the questions containing the critical entities in the subgraph, ensuring the question is relevant to the whole subgraph. (2) We propose an optimization strategy called local fine-tuning, which can make good use of the rich information hidden in the pre-trained model to improve the ability of the model to adapt the OOV predicates. Extensive experiments show that our method outperforms existing methods significantly on three widely-used benchmark datasets SimpleQuestion, PathQuestions, and WebQuestions.
Despite having achieved great success for sentiment analysis, existing neural models struggle with implicit sentiment analysis. It is because they may latch onto spurious correlations (“shortcuts”, e.g., focusing only on explicit sentiment words), resulting in undermining the effectiveness and robustness of the learned model. In this work, we propose a CausaL intervention model for implicit sEntiment ANalysis using instrumental variable (CLEAN). We first review sentiment analysis from a causal perspective and analyze the confounders existing in this task. Then, we introduce instrumental variable to eliminate the confounding causal effects, thus extracting the pure causal effect between sentence and sentiment. We compare the proposed CLEAN with several strong baselines on both the general implicit sentiment analysis and aspect-based implicit sentiment analysis tasks. The results indicate the great advantages of our model and the efficacy of implicit sentiment reasoning.
Large pre-trained language models (PLMs) have demonstrated superior performance in industrial applications. Recent studies have explored parameter-efficient PLM tuning, which only updates a small amount of task-specific parameters while achieving both high efficiency and comparable performance against standard fine-tuning. However, all these methods ignore the inefficiency problem caused by the task-specific output layers, which is inflexible for us to re-use PLMs and introduces non-negligible parameters. In this work, we focus on the text classification task and propose plugin-tuning, a framework that further improves the efficiency of existing parameter-efficient methods with a unified classifier. Specifically, we re-formulate both token and sentence classification tasks into a unified language modeling task, and map label spaces of different tasks into the same vocabulary space. In this way, we can directly re-use the language modeling heads of PLMs, avoiding introducing extra parameters for different tasks. We conduct experiments on six classification benchmarks. The experimental results show that plugin-tuning can achieve comparable performance against fine-tuned PLMs, while further saving around 50% parameters on top of other parameter-efficient methods.
Existing research for argument representation learning mainly treats tokens in the sentence equally and ignores the implied structure information of argumentative context. In this paper, we propose to separate tokens into two groups, namely framing tokens and topic ones, to capture structural information of arguments. In addition, we consider high-level structure by incorporating paragraph-level position information. A novel structure-aware argument encoder is proposed for literature discourse analysis. Experimental results on both a self-constructed corpus and a public corpus show the effectiveness of our model. Resources are available at https://github.com/lemuria-wchen/SAE.
Due to the increasing concerns for data privacy, source-free unsupervised domain adaptation attracts more and more research attention, where only a trained source model is assumed to be available, while the labeled source data remain private. To get promising adaptation results, we need to find effective ways to transfer knowledge learned in source domain and leverage useful domain specific information from target domain at the same time. This paper describes our winning contribution to SemEval 2021 Task 10: Source-Free Domain Adaptation for Semantic Processing. Our key idea is to leverage the model trained on source domain data to generate pseudo labels for target domain samples. Besides, we propose Negation-aware Pre-training (NAP) to incorporate negation knowledge into model. Our method win the 1st place with F1-score of 0.822 on the official blind test set of Negation Detection Track.
Recently, the sequence-to-sequence models have made remarkable progress on the task of keyphrase generation (KG) by concatenating multiple keyphrases in a predefined order as a target sequence during training. However, the keyphrases are inherently an unordered set rather than an ordered sequence. Imposing a predefined order will introduce wrong bias during training, which can highly penalize shifts in the order between keyphrases. In this work, we propose a new training paradigm One2Set without predefining an order to concatenate the keyphrases. To fit this paradigm, we propose a novel model that utilizes a fixed set of learned control codes as conditions to generate a set of keyphrases in parallel. To solve the problem that there is no correspondence between each prediction and target during training, we propose a K-step label assignment mechanism via bipartite matching, which greatly increases the diversity and reduces the repetition rate of generated keyphrases. The experimental results on multiple benchmarks demonstrate that our approach significantly outperforms the state-of-the-art methods.
In recent years, math word problem solving has received considerable attention and achieved promising results, but previous methods rarely take numerical values into consideration. Most methods treat the numerical values in the problems as number symbols, and ignore the prominent role of the numerical values in solving the problem. In this paper, we propose a novel approach called NumS2T, which enhances math word problem solving performance by explicitly incorporating numerical values into a sequence-to-tree network. In addition, a numerical properties prediction mechanism is used to capture the category and comparison information of numerals and measure their importance in global expressions. Experimental results on the Math23K and APE datasets demonstrate that our model achieves better performance than existing state-of-the-art models.
Distant supervision for relation extraction provides uniform bag labels for each sentence inside the bag, while accurate sentence labels are important for downstream applications that need the exact relation type. Directly using bag labels for sentence-level training will introduce much noise, thus severely degrading performance. In this work, we propose the use of negative training (NT), in which a model is trained using complementary labels regarding that “the instance does not belong to these complementary labels”. Since the probability of selecting a true label as a complementary label is low, NT provides less noisy information. Furthermore, the model trained with NT is able to separate the noisy data from the training data. Based on NT, we propose a sentence-level framework, SENT, for distant relation extraction. SENT not only filters the noisy data to construct a cleaner dataset, but also performs a re-labeling process to transform the noisy data into useful training data, thus further benefiting the model’s performance. Experimental results show the significant improvement of the proposed method over previous methods on sentence-level evaluation and de-noise effect.
TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.
The development of neural networks and pretraining techniques has spawned many sentence-level tagging systems that achieved superior performance on typical benchmarks. However, a relatively less discussed topic is what if more context information is introduced into current top-scoring tagging systems. Although several existing works have attempted to shift tagging systems from sentence-level to document-level, there is still no consensus conclusion about when and why it works, which limits the applicability of the larger-context approach in tagging tasks. In this paper, instead of pursuing a state-of-the-art tagging system by architectural exploration, we focus on investigating when and why the larger-context training, as a general strategy, can work. To this end, we conduct a thorough comparative study on four proposed aggregators for context information collecting and present an attribute-aided evaluation method to interpret the improvement brought by larger-context training. Experimentally, we set up a testbed based on four tagging tasks and thirteen datasets. Hopefully, our preliminary observations can deepen the understanding of larger-context training and enlighten more follow-up works on the use of contextual information.
In this paper, we focus on identifying interactive argument pairs from two posts with opposite stances to a certain topic. Considering opinions are exchanged from different perspectives of the discussing topic, we study the discrete representations for arguments to capture varying aspects in argumentation languages (e.g., the debate focus and the participant behavior). Moreover, we utilize hierarchical structure to model post-wise information incorporating contextual knowledge. Experimental results on the large-scale dataset collected from CMV show that our proposed framework can significantly outperform the competitive baselines. Further analyses reveal why our model yields superior performance and prove the usefulness of our learned representations.
The explosion of online health news articles runs the risk of the proliferation of low-quality information. Within the existing work on fact-checking, however, relatively little attention has been paid to medical news. We present a health news classification task to determine whether medical news articles satisfy a set of review criteria deemed important by medical experts and health care journalists. We present a dataset of 1,119 health news paired with systematic reviews. The review criteria consist of six elements that are essential to the accuracy of medical news. We then present experiments comparing the classical token-based approach with the more recent transformer-based models. Our results show that detecting qualitative lapses is a challenging task with direct ramifications in misinformation, but is an important direction to pursue beyond assigning True or False labels to short claims.
Aiming to generate a set of keyphrases, Keyphrase Generation (KG) is a classical task for capturing the central idea from a given document. Based on Seq2Seq models, the previous reinforcement learning framework on KG tasks utilizes the evaluation metrics to further improve the well-trained neural models. However, these KG evaluation metrics such as F1@5 and F1@M are only aware of the exact correctness of predictions on phrase-level and ignore the semantic similarities between similar predictions and targets, which inhibits the model from learning deep linguistic patterns. In response to this problem, we propose a new fine-grained evaluation metric to improve the RL framework, which considers different granularities: token-level F1 score, edit distance, duplication, and prediction quantities. On the whole, the new framework includes two reward functions: the fine-grained evaluation score and the vanilla F1 score. This framework helps the model identifying some partial match phrases which can be further optimized as the exact match ones. Experiments on KG benchmarks show that our proposed training framework outperforms the previous RL training frameworks among all evaluation scores. In addition, our method can effectively ease the synonym problem and generate a higher quality prediction. The source code is available at https://github.com/xuyige/FGRL4KG.
Math word problem solving has attracted considerable research interest in recent years. Previous works have shown the effectiveness of utilizing graph neural networks to capture the relationships in the problem. However, these works did not carefully take the edge label information and the long-range word relationship across sentences into consideration. In addition, during generation, they focus on the most relevant areas of the currently generated word, while neglecting the rest of the problem. In this paper, we propose a novel Edge-Enhanced Hierarchical Graph-to-Tree model (EEH-G2T), in which the math word problems are represented as edge-labeled graphs. Specifically, an edge-enhanced hierarchical graph encoder is used to incorporate edge label information. This encoder updates the graph nodes hierarchically in two steps: sentence-level aggregation and problem-level aggregation. Furthermore, a tree-structured decoder with a split attention mechanism is applied to guide the model to pay attention to different parts of the input problem. Experimental results on the MAWPS and Math23K dataset showed that our EEH-G2T can effectively improve performance compared with state-of-the-art methods.
With the rapid increase in the volume of dialogue data from daily life, there is a growing demand for dialogue summarization. Unfortunately, training a large summarization model is generally infeasible due to the inadequacy of dialogue data with annotated summaries. Most existing works for low-resource dialogue summarization directly pretrain models in other domains, e.g., the news domain, but they generally neglect the huge difference between dialogues and conventional articles. To bridge the gap between out-of-domain pretraining and in-domain fine-tuning, in this work, we propose a multi-source pretraining paradigm to better leverage the external summary data. Specifically, we exploit large-scale in-domain non-summary data to separately pretrain the dialogue encoder and the summary decoder. The combined encoder-decoder model is then pretrained on the out-of-domain summary data using adversarial critics, aiming to facilitate domain-agnostic summarization. The experimental results on two public datasets show that with only limited training data, our approach achieves competitive performance and generalizes well in different dialogue scenarios.
In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or they encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.
Aspect-based sentiment analysis aims to identify the sentiment polarity of a specific aspect in product reviews. We notice that about 30% of reviews do not contain obvious opinion words, but still convey clear human-aware sentiment orientation, which is known as implicit sentiment. However, recent neural network-based approaches paid little attention to implicit sentiment entailed in the reviews. To overcome this issue, we adopt Supervised Contrastive Pre-training on large-scale sentiment-annotated corpora retrieved from in-domain language resources. By aligning the representation of implicit sentiment expressions to those with the same sentiment label, the pre-training process leads to better capture of both implicit and explicit sentiment orientation towards aspects in reviews. Experimental results show that our method achieves state-of-the-art performance on SemEval2014 benchmarks, and comprehensive analysis validates its effectiveness on learning implicit sentiment.
Human dialogue contains evolving concepts, and speakers naturally associate multiple concepts to compose a response. However, current dialogue models with the seq2seq framework lack the ability to effectively manage concept transitions and can hardly introduce multiple concepts to responses in a sequential decoding manner. To facilitate a controllable and coherent dialogue, in this work, we devise a concept-guided non-autoregressive model (CG-nAR) for open-domain dialogue generation. The proposed model comprises a multi-concept planning module that learns to identify multiple associated concepts from a concept graph and a customized Insertion Transformer that performs concept-guided non-autoregressive generation to complete a response. The experimental results on two public datasets show that CG-nAR can produce diverse and coherent responses, outperforming state-of-the-art baselines in both automatic and human evaluations with substantially faster inference speed.
Natural question generation (QG) aims to generate questions from a passage, and generated questions are answered from the passage. Most models with state-of-the-art performance model the previously generated text at each decoding step. However, (1) they ignore the rich structure information that is hidden in the previously generated text. (2) they ignore the impact of copied words on the passage. We perceive that information in previously generated words serves as auxiliary information in subsequent generation. To address these problems, we design the Iterative Graph Network-based Decoder (IGND) to model the previous generation using a Graph Neural Network at each decoding step. Moreover, our graph model captures dependency relations in the passage that boost the generation. Experimental results demonstrate that our model outperforms the state-of-the-art models with sentence-level QG tasks on SQuAD and MARCO datasets.
The encoder–decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source document can result in generating uncontrollable and inaccurate absent keyphrases. To address these problems, we propose a novel graph-based method that can capture explicit knowledge from related references. Our model first retrieves some document-keyphrases pairs similar to the source document from a pre-defined index as references. Then a heterogeneous graph is constructed to capture relations with different levels of granularity of the source document and its retrieved references. To guide the decoding process, a hierarchical attention and copy mechanism is introduced, which directly copies appropriate words from both source document and its references based on their relevance and significance. The experimental results on multiple KG benchmarks show that the proposed model achieves significant improvements against other baseline models, especially with regard to the absent keyphrase prediction.
Recent studies have shown that deep neural network-based models are vulnerable to intentionally crafted adversarial examples, and various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models. However, there is a lack of systematic study on comparing different defense approaches under the same attacking setting. In this paper, we seek to fill the gap of systematic studies through comprehensive researches on understanding the behavior of neural text classifiers trained by various defense methods under representative adversarial attacks. In addition, we propose an effective method to further improve the robustness of neural text classifiers against such attacks, and achieved the highest accuracy on both clean and adversarial examples on AGNEWS and IMDB datasets by a significant margin. We hope this study could provide useful clues for future research on text adversarial defense. Codes are available at https://github.com/RockyLzy/TextDefender.
The clustering-based unsupervised relation discovery method has gradually become one of the important methods of open relation extraction (OpenRE). However, high-dimensional vectors can encode complex linguistic information which leads to the problem that the derived clusters cannot explicitly align with the relational semantic classes. In this work, we propose a relation-oriented clustering model and use it to identify the novel relations in the unlabeled data. Specifically, to enable the model to learn to cluster relational data, our method leverages the readily available labeled data of pre-defined relations to learn a relation-oriented representation. We minimize distance between the instance with same relation by gathering the instances towards their corresponding relation centroids to form a cluster structure, so that the learned representation is cluster-friendly. To reduce the clustering bias on predefined classes, we optimize the model by minimizing a joint objective on both labeled and unlabeled data. Experimental results show that our method reduces the error rate by 29.2% and 15.7%, on two datasets respectively, compared with current SOTA methods.
Cross-domain sentiment analysis is currently a hot topic in both the research and industrial areas. One of the most popular framework for the task is domain-invariant representation learning (DIRL), which aims to learn a distribution-invariant feature representation across domains. However, in this work, we find out that applying DIRL may degrade domain adaptation performance when the label distribution P(Y) changes across domains. To address this problem, we propose a modification to DIRL, obtaining a novel weighted domain-invariant representation learning (WDIRL) framework. We show that it is easy to transfer existing models of the DIRL framework to the WDIRL framework. Empirical studies on extensive cross-domain sentiment analysis tasks verified our statements and showed the effectiveness of our proposed solution.
Visual storytelling aims to generate a narrative paragraph from a sequence of images automatically. Existing approaches construct text description independently for each image and roughly concatenate them as a story, which leads to the problem of generating semantically incoherent content. In this paper, we propose a new way for visual storytelling by introducing a topic description task to detect the global semantic context of an image stream. A story is then constructed with the guidance of the topic description. In order to combine the two generation tasks, we propose a multi-agent communication framework that regards the topic description generator and the story generator as two agents and learn them simultaneously via iterative updating mechanism. We validate our approach on VIST dataset, where quantitative results, ablations, and human evaluation demonstrate our method’s good ability in generating stories with higher quality compared to state-of-the-art methods.
Previous work for rumor resolution concentrates on exploiting time-series characteristics or modeling topology structure separately. However, how local interactive pattern affects global information assemblage has not been explored. In this paper, we attempt to address the problem by learning evolution of message interaction. We model confrontation and reciprocity between message pairs via discrete variational autoencoders which effectively reflects the diversified opinion interactivity. Moreover, we capture the variation of message interaction using a hierarchical framework to better integrate information flow of a rumor cascade. Experiments on PHEME dataset demonstrate our proposed model achieves higher accuracy than existing methods.
Recently, many works have tried to augment the performance of Chinese named entity recognition (NER) using word lexicons. As a representative, Lattice-LSTM has achieved new benchmark results on several public Chinese NER datasets. However, Lattice-LSTM has a complex model architecture. This limits its application in many industrial areas where real-time NER responses are needed. In this work, we propose a simple but effective method for incorporating the word lexicon into the character representations. This method avoids designing a complicated sequence modeling architecture, and for any neural NER model, it requires only subtle adjustment of the character representation layer to introduce the lexicon information. Experimental studies on four benchmark Chinese NER datasets show that our method achieves an inference speed up to 6.15 times faster than those of state-of-the-art methods, along with a better performance. The experimental results also show that the proposed method can be easily incorporated with pre-trained models like BERT.
In this work, we explore the way to quickly adjust an existing named entity recognition (NER) system to make it capable of recognizing entity types not defined in the system. As an illustrative example, consider the case that a NER system has been built to recognize person and organization names, and now it requires to additionally recognize job titles. Such a situation is common in the industrial areas, where the entity types required to recognize vary a lot in different products and keep changing. To avoid laborious data labeling and achieve fast adaptation, we propose to adjust the existing NER system using the previously labeled data and entity lexicons of the newly introduced entity types. We formulate such a task as a partially supervised learning problem and accordingly propose an effective algorithm to solve the problem. Comprehensive experimental studies on several public NER datasets validate the effectiveness of our method.
Conditional random fields (CRF) for label decoding has become ubiquitous in sequence labeling tasks. However, the local label dependencies and inefficient Viterbi decoding have always been a problem to be solved. In this work, we introduce a novel two-stage label decoding framework to model long-term label dependencies, while being much more computationally efficient. A base model first predicts draft labels, and then a novel two-stream self-attention model makes refinements on these draft predictions based on long-range label dependencies, which can achieve parallel decoding for a faster prediction. In addition, in order to mitigate the side effects of incorrect draft labels, Bayesian neural networks are used to indicate the labels with a high probability of being wrong, which can greatly assist in preventing error propagation. The experimental results on three sequence labeling benchmarks demonstrated that the proposed method not only outperformed the CRF-based methods but also greatly accelerated the inference process.
Aspect-based sentiment analysis (ABSA) aims to predict the sentiment towards a specific aspect in the text. However, existing ABSA test sets cannot be used to probe whether a model can distinguish the sentiment of the target aspect from the non-target aspects. To solve this problem, we develop a simple but effective approach to enrich ABSA test sets. Specifically, we generate new examples to disentangle the confounding sentiments of the non-target aspects from the target aspect’s sentiment. Based on the SemEval 2014 dataset, we construct the Aspect Robustness Test Set (ARTS) as a comprehensive probe of the aspect robustness of ABSA models. Over 92% data of ARTS show high fluency and desired sentiment on all aspects by human evaluation. Using ARTS, we analyze the robustness of nine ABSA models, and observe, surprisingly, that their accuracy drops by up to 69.73%. We explore several ways to improve aspect robustness, and find that adversarial training can improve models’ performance on ARTS by up to 32.85%. Our code and new test set are available at https://github.com/zhijing-jin/ARTS_TestSet
The performance of the Chinese Word Segmentation (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks, especially the successful use of large pre-trained models. In this paper, we take stock of what we have achieved and rethink what’s left in the CWS task. Methodologically, we propose a fine-grained evaluation for existing CWS systems, which not only allows us to diagnose the strengths and weaknesses of existing models (under the in-dataset setting), but enables us to quantify the discrepancy between different criterion and alleviate the negative transfer problem when doing multi-criteria learning. Strategically, despite not aiming to propose a novel model in this paper, our comprehensive experiments on eight models and seven datasets, as well as thorough analysis, could search for some promising direction for future research. We make all codes publicly available and release an interface that can quickly evaluate and diagnose user’s models: https://github.com/neulab/InterpretEval
With the advancements in natural language processing tasks, math word problem solving has received increasing attention. Previous methods have achieved promising results but ignore background common-sense knowledge not directly provided by the problem. In addition, during generation, they focus on local features while neglecting global information. To incorporate external knowledge and global expression information, we propose a novel knowledge-aware sequence-to-tree (KA-S2T) network in which the entities in the problem sequences and their categories are modeled as an entity graph. Based on this entity graph, a graph attention network is used to capture knowledge-aware problem representations. Further, we use a tree-structured decoder with a state aggregation mechanism to capture the long-distance dependency and global expression information. Experimental results on the Math23K dataset revealed that the KA-S2T model can achieve better performance than previously reported best results.
Existing research for question generation encodes the input text as a sequence of tokens without explicitly modeling fact information. These models tend to generate irrelevant and uninformative questions. In this paper, we explore to incorporate facts in the text for question generation in a comprehensive way. We present a novel task of question generation given a query path in the knowledge graph constructed from the input text. We divide the task into two steps, namely, query representation learning and query-based question generation. We formulate query representation learning as a sequence labeling problem for identifying the involved facts to form a query and employ an RNN-based generator for question generation. We first train the two modules jointly in an end-to-end fashion, and further enforce the interaction between these two modules in a variational framework. We construct the experimental datasets on top of SQuAD and results show that our model outperforms other state-of-the-art approaches, and the performance margin is larger when target questions are complex. Human evaluation also proves that our model is able to generate relevant and informative questions.
In this work, we explore the way to perform named entity recognition (NER) using only unlabeled data and named entity dictionaries. To this end, we formulate the task as a positive-unlabeled (PU) learning problem and accordingly propose a novel PU learning algorithm to perform the task. We prove that the proposed algorithm can unbiasedly and consistently estimate the task loss as if there is fully labeled data. A key feature of the proposed method is that it does not require the dictionaries to label every entity within a sentence, and it even does not require the dictionaries to label all of the words constituting an entity. This greatly reduces the requirement on the quality of the dictionaries and makes our method generalize well with quite simple dictionaries. Empirical studies on four public NER datasets demonstrate the effectiveness of our proposed method. We have published the source code at https://github.com/v-mipeng/LexiconNER.
This paper provides a new way to improve the efficiency of the REINFORCE training process. We apply it to the task of instance selection in distant supervision. Modeling the instance selection in one bag as a sequential decision process, a reinforcement learning agent is trained to determine whether an instance is valuable or not and construct a new bag with less noisy instances. However unbiased methods, such as REINFORCE, could usually take much time to train. This paper adopts posterior regularization (PR) to integrate some domain-specific rules in instance selection using REINFORCE. As the experiment results show, this method remarkably improves the performance of the relation classifier trained on cleaned distant supervision dataset as well as the efficiency of the REINFORCE training.
Recurrent neural networks (RNN) used for Chinese named entity recognition (NER) that sequentially track character and word information have achieved great success. However, the characteristic of chain structure and the lack of global semantics determine that RNN-based models are vulnerable to word ambiguities. In this work, we try to alleviate this problem by introducing a lexicon-based graph neural network with global semantics, in which lexicon knowledge is used to connect characters to capture the local composition, while a global relay node can capture global sentence semantics and long-range dependency. Based on the multiple graph-based interactions among characters, potential words, and the whole-sentence semantics, word ambiguities can be effectively tackled. Experiments on four NER datasets show that the proposed model achieves significant improvements against other baseline models.
Natural language inference aims to predict whether a premise sentence can infer another hypothesis sentence. Existing methods typically have framed the reasoning problem as a semantic matching task. The both sentences are encoded and interacted symmetrically and in parallel. However, in the process of reasoning, the role of the two sentences is obviously different, and the sentence pairs for NLI are asymmetrical corpora. In this paper, we propose an asynchronous deep interaction network (ADIN) to complete the task. ADIN is a neural network structure stacked with multiple inference sub-layers, and each sub-layer consists of two local inference modules in an asymmetrical manner. Different from previous methods, this model deconstructs the reasoning process and implements the asynchronous and multi-step reasoning. Experiment results show that ADIN achieves competitive performance and outperforms strong baselines on three popular benchmarks: SNLI, MultiNLI, and SciTail.
This paper presents a novel transfer multi-task learning method for Bacteria Biotope rel+ner task at BioNLP-OST 2019. To alleviate the data deficiency problem in domain-specific information extraction, we use BERT(Bidirectional Encoder Representations from Transformers) and pre-train it using mask language models and next sentence prediction on both general corpus and medical corpus like PubMed. In fine-tuning stage, we fine-tune the relation extraction layer and mention recognition layer designed by us on the top of BERT to extract mentions and relations simultaneously. The evaluation results show that our method achieves the best performance on all metrics (including slot error rate, precision and recall) in the Bacteria Biotope rel+ner subtask.
The task of adopting a model with good performance to a target domain that is different from the source domain used for training has received considerable attention in sentiment analysis. Most existing approaches mainly focus on learning representations that are domain-invariant in both the source and target domains. Few of them pay attention to domain-specific information, which should also be informative. In this work, we propose a method to simultaneously extract domain specific and invariant representations and train a classifier on each of the representation, respectively. And we introduce a few target domain labeled data for learning domain-specific information. To effectively utilize the target domain labeled data, we train the domain invariant representation based classifier with both the source and target domain labeled data and train the domain-specific representation based classifier with only the target domain labeled data. These two classifiers then boost each other in a co-training style. Extensive sentiment analysis experiments demonstrated that the proposed method could achieve better performance than state-of-the-art methods.
Attention mechanisms have been leveraged for sentiment classification tasks because not all words have the same importance. However, most existing attention models did not take full advantage of sentiment lexicons, which provide rich sentiment information and play a critical role in sentiment analysis. To achieve the above target, in this work, we propose a novel lexicon-based supervised attention model (LBSA), which allows a recurrent neural network to focus on the sentiment content, thus generating sentiment-informative representations. Compared with general attention models, our model has better interpretability and less noise. Experimental results on three large-scale sentiment classification datasets showed that the proposed method outperforms previous methods.
In this paper, we investigate the issue of persuasiveness evaluation for argumentative comments. Most of the existing research explores different text features of reply comments on word level and ignores interactions between participants. In general, viewpoints are usually expressed by multiple arguments and exchanged on argument level. To better model the process of dialogical argumentation, we propose a novel co-attention mechanism based neural network to capture the interactions between participants on argument level. Experimental results on a publicly available dataset show that the proposed model significantly outperforms some state-of-the-art methods for persuasiveness evaluation. Further analysis reveals that attention weights computed in our model are able to extract interactive argument pairs from the original post and the reply.
Part-of-Speech (POS) tagging for Twitter has received considerable attention in recent years. Because most POS tagging methods are based on supervised models, they usually require a large amount of labeled data for training. However, the existing labeled datasets for Twitter are much smaller than those for newswire text. Hence, to help POS tagging for Twitter, most domain adaptation methods try to leverage newswire datasets by learning the shared features between the two domains. However, from a linguistic perspective, Twitter users not only tend to mimic the formal expressions of traditional media, like news, but they also appear to be developing linguistically informal styles. Therefore, POS tagging for the formal Twitter context can be learned together with the newswire dataset, while POS tagging for the informal Twitter context should be learned separately. To achieve this task, in this work, we propose a hypernetwork-based method to generate different parameters to separately model contexts with different expression styles. Experimental results on three different datasets show that our approach achieves better performance than state-of-the-art methods in most cases.
In this work, we study the problem of part-of-speech tagging for Tweets. In contrast to newswire articles, Tweets are usually informal and contain numerous out-of-vocabulary words. Moreover, there is a lack of large scale labeled datasets for this domain. To tackle these challenges, we propose a novel neural network to make use of out-of-domain labeled data, unlabeled in-domain data, and labeled in-domain data. Inspired by adversarial neural networks, the proposed method tries to learn common features through adversarial discriminator. In addition, we hypothesize that domain-specific features of target domain should be preserved in some degree. Hence, the proposed method adopts a sequence-to-sequence autoencoder to perform this task. Experimental results on three different datasets show that our method achieves better performance than state-of-the-art methods.
We investigate the task of open domain opinion relation extraction. Different from works on manually labeled corpus, we propose an efficient distantly supervised framework based on pattern matching and neural network classifiers. The patterns are designed to automatically generate training data, and the deep learning model is design to capture various lexical and syntactic features. The result algorithm is fast and scalable on large-scale corpus. We test the system on the Amazon online review dataset. The result shows that our model is able to achieve promising performances without any human annotations.
On microblogging services, people usually use hashtags to mark microblogs, which have a specific theme or content, making them easier for users to find. Hence, how to automatically recommend hashtags for microblogs has received much attention in recent years. Previous deep neural network-based hashtag recommendation approaches converted the task into a multi-class classification problem. However, most of these methods only took the microblog itself into consideration. Motivated by the intuition that the history of users should impact the recommendation procedure, in this work, we extend end-to-end memory networks to perform this task. We incorporate the histories of users into the external memory and introduce a hierarchical attention mechanism to select more appropriate histories. To train and evaluate the proposed method, we also construct a dataset based on microblogs collected from Twitter. Experimental results demonstrate that the proposed methods can significantly outperform state-of-the-art methods. By incorporating the hierarchical attention mechanism, the relative improvement in the proposed method over the state-of-the-art method is around 67.9% in the F1-score.