Qian Dong
2024
Revisiting Interpolation Augmentation for Speech-to-Text Generation
Chen Xu
|
Jie Wang
|
Xiaoqian Liu
|
Qian Dong
|
Chunliang Zhang
|
Tong Xiao
|
JingBo Zhu
|
Dapeng Man
|
Wu Yang
Findings of the Association for Computational Linguistics: ACL 2024
Speech-to-text (S2T) generation systems frequently face challenges in low-resource scenarios, primarily due to the lack of extensive labeled datasets. One emerging solution is constructing virtual training samples by interpolating inputs and labels, which has notably enhanced system generalization in other domains. Despite its potential, this technique’s application in S2T tasks has remained under-explored. In this paper, we delve into the utility of interpolation augmentation, guided by several pivotal questions. Our findings reveal that employing an appropriate strategy in interpolation augmentation significantly enhances performance across diverse tasks, architectures, and data scales, offering a promising avenue for more robust S2T systems in resource-constrained settings.
2022
Learning When to Translate for Streaming Speech
Qian Dong
|
Yaoming Zhu
|
Mingxuan Wang
|
Lei Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
How to find proper moments to generate partial sentence translation given a streaming speech input? Existing approaches waiting-and-translating for a fixed duration often break the acoustic units in speech, since the boundaries between acoustic units in speech are not even. In this paper, we propose MoSST, a simple yet effective method for translating streaming speech content. Given a usually long speech sequence, we develop an efficient monotonic segmentation module inside an encoder-decoder model to accumulate acoustic information incrementally and detect proper speech unit boundaries for the input in speech translation task. Experiments on multiple translation directions of the MuST-C dataset show that outperforms existing methods and achieves the best trade-off between translation quality (BLEU) and latency. Our code is available at https://github.com/dqqcasia/mosst.
Search
Co-authors
- Yaoming Zhu 1
- Mingxuan Wang 1
- Lei Li 1
- Chen Xu 1
- Jie Wang 1
- show all...