Qian Li


2021

pdf bib
Generation and Extraction Combined Dialogue State Tracking with Hierarchical Ontology Integration
Xinmeng Li | Qian Li | Wansen Wu | Quanjun Yin
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recently, the focus of dialogue state tracking has expanded from single domain to multiple domains. The task is characterized by the shared slots between domains. As the scenario gets more complex, the out-of-vocabulary problem also becomes severer. Current models are not satisfactory for solving the challenges of ontology integration between domains and out-of-vocabulary problems. To address the problem, we explore the hierarchical semantic of ontology and enhance the interrelation between slots with masked hierarchical attention. In state value decoding stage, we solve the out-of-vocabulary problem by combining generation method and extraction method together. We evaluate the performance of our model on two representative datasets, MultiWOZ in English and CrossWOZ in Chinese. The results show that our model yields a significant performance gain over current state-of-the-art state tracking model and it is more robust to out-of-vocabulary problem compared with other methods.

pdf bib
CasEE: A Joint Learning Framework with Cascade Decoding for Overlapping Event Extraction
Jiawei Sheng | Shu Guo | Bowen Yu | Qian Li | Yiming Hei | Lihong Wang | Tingwen Liu | Hongbo Xu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Harnessing Privileged Information for Hyperbole Detection
Rhys Biddle | Maciek Rybinski | Qian Li | Cecile Paris | Guandong Xu
Proceedings of the The 19th Annual Workshop of the Australasian Language Technology Association

The detection of hyperbole is an important stepping stone to understanding the intentions of a hyperbolic utterance. We propose a model that combines pre-trained language models with privileged information for the task of hyperbole detection. We also introduce a suite of behavioural tests to probe the capabilities of hyperbole detection models across a range of hyperbole types. Our experiments show that our model improves upon baseline models on an existing hyperbole detection dataset. Probing experiments combined with analysis using local linear approximations (LIME) show that our model excels at detecting one particular type of hyperbole. Further, we discover that our experiments highlight annotation artifacts introduced through the process of literal paraphrasing of hyperbole. These annotation artifacts are likely to be a roadblock to further improvements in hyperbole detection.

2019

pdf bib
Are You for Real? Detecting Identity Fraud via Dialogue Interactions
Weikang Wang | Jiajun Zhang | Qian Li | Chengqing Zong | Zhifei Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Identity fraud detection is of great importance in many real-world scenarios such as the financial industry. However, few studies addressed this problem before. In this paper, we focus on identity fraud detection in loan applications and propose to solve this problem with a novel interactive dialogue system which consists of two modules. One is the knowledge graph (KG) constructor organizing the personal information for each loan applicant. The other is structured dialogue management that can dynamically generate a series of questions based on the personal KG to ask the applicants and determine their identity states. We also present a heuristic user simulator based on problem analysis to evaluate our method. Experiments have shown that the trainable dialogue system can effectively detect fraudsters, and achieve higher recognition accuracy compared with rule-based systems. Furthermore, our learned dialogue strategies are interpretable and flexible, which can help promote real-world applications.

pdf bib
Answer-Supervised Question Reformulation for Enhancing Conversational Machine Comprehension
Qian Li | Hui Su | Cheng Niu | Daling Wang | Zekang Li | Shi Feng | Yifei Zhang
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

In conversational machine comprehension, it has become one of the research hotspots integrating conversational history information through question reformulation for obtaining better answers. However, the existing question reformulation models are trained only using supervised question labels annotated by annotators without considering any feedback information from answers. In this paper, we propose a novel Answer-Supervised Question Reformulation (ASQR) model for enhancing conversational machine comprehension with reinforcement learning technology. ASQR utilizes a pointer-copy-based question reformulation model as an agent, takes an action to predict the next word, and observes a reward for the whole sentence state after generating the end-of-sequence token. The experimental results on QuAC dataset prove that our ASQR model is more effective in conversational machine comprehension. Moreover, pretraining is essential in reinforcement learning models, so we provide a high-quality annotated dataset for question reformulation by sampling a part of QuAC dataset.

pdf bib
Incremental Transformer with Deliberation Decoder for Document Grounded Conversations
Zekang Li | Cheng Niu | Fandong Meng | Yang Feng | Qian Li | Jie Zhou
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Document Grounded Conversations is a task to generate dialogue responses when chatting about the content of a given document. Obviously, document knowledge plays a critical role in Document Grounded Conversations, while existing dialogue models do not exploit this kind of knowledge effectively enough. In this paper, we propose a novel Transformer-based architecture for multi-turn document grounded conversations. In particular, we devise an Incremental Transformer to encode multi-turn utterances along with knowledge in related documents. Motivated by the human cognitive process, we design a two-pass decoder (Deliberation Decoder) to improve context coherence and knowledge correctness. Our empirical study on a real-world Document Grounded Dataset proves that responses generated by our model significantly outperform competitive baselines on both context coherence and knowledge relevance.

pdf bib
Incremental Learning from Scratch for Task-Oriented Dialogue Systems
Weikang Wang | Jiajun Zhang | Qian Li | Mei-Yuh Hwang | Chengqing Zong | Zhifei Li
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Clarifying user needs is essential for existing task-oriented dialogue systems. However, in real-world applications, developers can never guarantee that all possible user demands are taken into account in the design phase. Consequently, existing systems will break down when encountering unconsidered user needs. To address this problem, we propose a novel incremental learning framework to design task-oriented dialogue systems, or for short Incremental Dialogue System (IDS), without pre-defining the exhaustive list of user needs. Specifically, we introduce an uncertainty estimation module to evaluate the confidence of giving correct responses. If there is high confidence, IDS will provide responses to users. Otherwise, humans will be involved in the dialogue process, and IDS can learn from human intervention through an online learning module. To evaluate our method, we propose a new dataset which simulates unanticipated user needs in the deployment stage. Experiments show that IDS is robust to unconsidered user actions, and can update itself online by smartly selecting only the most effective training data, and hence attains better performance with less annotation cost.

2018

pdf bib
A Multi-Attention based Neural Network with External Knowledge for Story Ending Predicting Task
Qian Li | Ziwei Li | Jin-Mao Wei | Yanhui Gu | Adam Jatowt | Zhenglu Yang
Proceedings of the 27th International Conference on Computational Linguistics

Enabling a mechanism to understand a temporal story and predict its ending is an interesting issue that has attracted considerable attention, as in case of the ROC Story Cloze Task (SCT). In this paper, we develop a multi-attention-based neural network (MANN) with well-designed optimizations, like Highway Network, and concatenated features with embedding representations into the hierarchical neural network model. Considering the particulars of the specific task, we thoughtfully extend MANN with external knowledge resources, exceeding state-of-the-art results obviously. Furthermore, we develop a thorough understanding of our model through a careful hand analysis on a subset of the stories. We identify what traits of MANN contribute to its outperformance and how external knowledge is obtained in such an ending prediction task.