The recent success of general-domain large language models (LLMs) has significantly changed the natural language processing paradigm towards a unified foundation model across domains and applications. In this paper, we focus on assessing the performance of GPT-4, the most capable LLM so far, on the text-based applications for radiology reports, comparing against state-of-the-art (SOTA) radiology-specific models. Exploring various prompting strategies, we evaluated GPT-4 on a diverse range of common radiology tasks and we found GPT-4 either outperforms or is on par with current SOTA radiology models. With zero-shot prompting, GPT-4 already obtains substantial gains (≈ 10% absolute improvement) over radiology models in temporal sentence similarity classification (accuracy) and natural language inference (F1). For tasks that require learning dataset-specific style or schema (e.g. findings summarisation), GPT-4 improves with example-based prompting and matches supervised SOTA. Our extensive error analysis with a board-certified radiologist shows GPT-4 has a sufficient level of radiology knowledge with only occasional errors in complex context that require nuanced domain knowledge. For findings summarisation, GPT-4 outputs are found to be overall comparable with existing manually-written impressions.
Label scarcity is a bottleneck for improving task performance in specialized domains. We propose a novel compositional transfer learning framework (DoT51) for zero-shot domain transfer. Without access to in-domain labels, DoT5 jointly learns domain knowledge (from masked language modelling of unlabelled in-domain free text) and task knowledge (from task training on more readily available general-domain data) in a multi-task manner. To improve the transferability of task training, we design a strategy named NLGU: We simultaneously train natural language generation (NLG) for in-domain label-to-data generation, which enables data augmentation for self-finetuning and natural language understanding (NLU) for label prediction. We evaluate DoT5 on the biomedical domain and the resource-lean subdomain of radiology, focusing on natural language inference, text summarization, and embedding learning. DoT5 demonstrates the effectiveness of compositional transfer learning through multi-task learning. In particular, DoT5 outperforms the current state-of-the-art in zero-shot transfer by over 7 absolute points in accuracy on RadNLI. We validate DoT5 with ablations and a case study demonstrating its ability to solve challenging NLI examples requiring in-domain expertise.
State-of-the-art pretrained contextualized models (PCM) eg. BERT use tasks such as WiC and WSD to evaluate their word-in-context representations. This inherently assumes that performance in these tasks reflect how well a model represents the coupled word and context semantics. We question this assumption by presenting the first quantitative analysis on the context-word interaction being tested in major contextual lexical semantic tasks. To achieve this, we run probing baselines on masked input, and propose measures to calculate and visualize the degree of context or word biases in existing datasets. The analysis was performed on both models and humans. Our findings demonstrate that models are usually not being tested for word-in-context semantics in the same way as humans are in these tasks, which helps us better understand the model-human gap. Specifically, to PCMs, most existing datasets fall into the extreme ends (the retrieval-based tasks exhibit strong target word bias while WiC-style tasks and WSD show strong context bias); In comparison, humans are less biased and achieve much better performance when both word and context are available than with masked input. We recommend our framework for understanding and controlling these biases for model interpretation and future task design.
Recent work indicated that pretrained language models (PLMs) such as BERT and RoBERTa can be transformed into effective sentence and word encoders even via simple self-supervised techniques. Inspired by this line of work, in this paper we propose a fully unsupervised approach to improving word-in-context (WiC) representations in PLMs, achieved via a simple and efficient WiC-targeted fine-tuning procedure: MirrorWiC. The proposed method leverages only raw texts sampled from Wikipedia, assuming no sense-annotated data, and learns context-aware word representations within a standard contrastive learning setup. We experiment with a series of standard and comprehensive WiC benchmarks across multiple languages. Our proposed fully unsupervised MirrorWiC models obtain substantial gains over off-the-shelf PLMs across all monolingual, multilingual and cross-lingual setups. Moreover, on some standard WiC benchmarks, MirrorWiC is even on-par with supervised models fine-tuned with in-task data and sense labels.
The performance of NMT systems has improved drastically in the past few years but the translation of multi-sense words still poses a challenge. Since word senses are not represented uniformly in the parallel corpora used for training, there is an excessive use of the most frequent sense in MT output. In this work, we propose CmBT (Contextually-mined Back-Translation), an approach for improving multi-sense word translation leveraging pre-trained cross-lingual contextual word representations (CCWRs). Because of their contextual sensitivity and their large pre-training data, CCWRs can easily capture word senses that are missing or very rare in parallel corpora used to train MT. Specifically, CmBT applies bilingual lexicon induction on CCWRs to mine sense-specific target sentences from a monolingual dataset, and then back-translates these sentences to generate a pseudo parallel corpus as additional training data for an MT system. We test the translation quality of ambiguous words on the MuCoW test suite, which was built to test the word sense disambiguation effectiveness of MT systems. We show that our system improves on the translation of difficult unseen and low frequency word senses.
Capturing word meaning in context and distinguishing between correspondences and variations across languages is key to building successful multilingual and cross-lingual text representation models. However, existing multilingual evaluation datasets that evaluate lexical semantics “in-context” have various limitations. In particular, 1) their language coverage is restricted to high-resource languages and skewed in favor of only a few language families and areas, 2) a design that makes the task solvable via superficial cues, which results in artificially inflated (and sometimes super-human) performances of pretrained encoders, and 3) no support for cross-lingual evaluation. In order to address these gaps, we present AM2iCo (Adversarial and Multilingual Meaning in Context), a wide-coverage cross-lingual and multilingual evaluation set; it aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts for 14 language pairs. We conduct a series of experiments in a wide range of setups and demonstrate the challenging nature of AM2iCo. The results reveal that current SotA pretrained encoders substantially lag behind human performance, and the largest gaps are observed for low-resource languages and languages dissimilar to English.
In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apurímac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.
One of the most powerful features of contextualized models is their dynamic embeddings for words in context, leading to state-of-the-art representations for context-aware lexical semantics. In this paper, we present a post-processing technique that enhances these representations by learning a transformation through static anchors. Our method requires only another pre-trained model and no labeled data is needed. We show consistent improvement in a range of benchmark tasks that test contextual variations of meaning both across different usages of a word and across different words as they are used in context. We demonstrate that while the original contextual representations can be improved by another embedding space from both contextualized and static models, the static embeddings, which have lower computational requirements, provide the most gains.
There is a growing awareness of the need to handle rare and unseen words in word representation modelling. In this paper, we focus on few-shot learning of emerging concepts that fully exploits only a few available contexts. We introduce a substitute-based context representation technique that can be applied on an existing word embedding space. Previous context-based approaches to modelling unseen words only consider bag-of-word first-order contexts, whereas our method aggregates contexts as second-order substitutes that are produced by a sequence-aware sentence completion model. We experimented with three tasks that aim to test the modelling of emerging concepts. We found that these tasks show different emphasis on first and second order contexts, and our substitute-based method achieves superior performance on naturally-occurring contexts from corpora.
In this paper, we present a thorough investigation on methods that align pre-trained contextualized embeddings into shared cross-lingual context-aware embedding space, providing strong reference benchmarks for future context-aware crosslingual models. We propose a novel and challenging task, Bilingual Token-level Sense Retrieval (BTSR). It specifically evaluates the accurate alignment of words with the same meaning in cross-lingual non-parallel contexts, currently not evaluated by existing tasks such as Bilingual Contextual Word Similarity and Sentence Retrieval. We show how the proposed BTSR task highlights the merits of different alignment methods. In particular, we find that using context average type-level alignment is effective in transferring monolingual contextualized embeddings cross-lingually especially in non-parallel contexts, and at the same time improves the monolingual space. Furthermore, aligning independently trained models yields better performance than aligning multilingual embeddings with shared vocabulary.