Qifeng Liu


2024

pdf bib
ChatMusician: Understanding and Generating Music Intrinsically with LLM
Ruibin Yuan | Hanfeng Lin | Yi Wang | Zeyue Tian | Shangda Wu | Tianhao Shen | Ge Zhang | Yuhang Wu | Cong Liu | Ziya Zhou | Liumeng Xue | Ziyang Ma | Qin Liu | Tianyu Zheng | Yizhi Li | Yinghao Ma | Yiming Liang | Xiaowei Chi | Ruibo Liu | Zili Wang | Chenghua Lin | Qifeng Liu | Tao Jiang | Wenhao Huang | Wenhu Chen | Jie Fu | Emmanouil Benetos | Gus Xia | Roger Dannenberg | Wei Xue | Shiyin Kang | Yike Guo
Findings of the Association for Computational Linguistics: ACL 2024

While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.

pdf bib
PyramidCodec: Hierarchical Codec for Long-form Music Generation in Audio Domain
Jianyi Chen | Zheqi Dai | Zhen Ye | Xu Tan | Qifeng Liu | Yike Guo | Wei Xue
Findings of the Association for Computational Linguistics: EMNLP 2024

Generating well-structured long music compositions, spanning several minutes, remains a challenge due to inefficient representation and the lack of structured representation. In this paper, we propose PyramidCodec, a hierarchical discrete representation of audio, for long audio-domain music generation. Specifically, we employ residual vector quantization on different levels of features to obtain the hierarchical discrete representation. The highest level of features has the largest hop size, resulting in the most compact token sequence. The quantized higher-level representation is up-sampled and combined with lower-level features to apply residual vector quantization and obtain lower-level discrete representations. Furthermore, we design a hierarchical training strategy to ensure that the details are gradually added with more levels of tokens. By performing hierarchical tokenization, the overall token sequence represents information at various scales, facilitating long-context modeling in music and enabling the generation of well-structured compositions. The experimental results demonstrate that our proposed PyramidCodec achieves competitive performance in terms of reconstruction quality and token per second (TPS). By enabling ultra-long music modeling at the lowest level, the proposed approach facilitates training a language model that can generate well-structured long-form music for up to 3 minutes, whose quality is further demonstrated by subjective and objective evaluations. The samples can be found at https://pyramidcodec.github.io/.