Qin Ying


2022

pdf bib
Neighbors Are Not Strangers: Improving Non-Autoregressive Translation under Low-Frequency Lexical Constraints
Chun Zeng | Jiangjie Chen | Tianyi Zhuang | Rui Xu | Hao Yang | Qin Ying | Shimin Tao | Yanghua Xiao
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Lexically constrained neural machine translation (NMT) draws much industrial attention for its practical usage in specific domains. However, current autoregressive approaches suffer from high latency. In this paper, we focus on non-autoregressive translation (NAT) for this problem for its efficiency advantage. We identify that current constrained NAT models, which are based on iterative editing, do not handle low-frequency constraints well. To this end, we propose a plug-in algorithm for this line of work, i.e., Aligned Constrained Training (ACT), which alleviates this problem by familiarizing the model with the source-side context of the constraints. Experiments on the general and domain datasets show that our model improves over the backbone constrained NAT model in constraint preservation and translation quality, especially for rare constraints.

pdf bib
HW-TSC at SemEval-2022 Task 7: Ensemble Model Based on Pretrained Models for Identifying Plausible Clarifications
Xiaosong Qiao | Yinglu Li | Min Zhang | Minghan Wang | Hao Yang | Shimin Tao | Qin Ying
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes the system for the identifying Plausible Clarifications of Implicit and Underspecified Phrases. This task was set up as an English cloze task, in which clarifications are presented as possible fillers and systems have to score how well each filler plausibly fits in a given context. For this shared task, we propose our own solutions, including supervised proaches, unsupervised approaches with pretrained models, and then we use these models to build an ensemble model. Finally we get the 2nd best result in the subtask1 which is a classification task, and the 3rd best result in the subtask2 which is a regression task.