Qingcai Chen


2022

pdf bib
CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark
Ningyu Zhang | Mosha Chen | Zhen Bi | Xiaozhuan Liang | Lei Li | Xin Shang | Kangping Yin | Chuanqi Tan | Jian Xu | Fei Huang | Luo Si | Yuan Ni | Guotong Xie | Zhifang Sui | Baobao Chang | Hui Zong | Zheng Yuan | Linfeng Li | Jun Yan | Hongying Zan | Kunli Zhang | Buzhou Tang | Qingcai Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually offering great promise for medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.

2021

pdf bib
Leveraging Capsule Routing to Associate Knowledge with Medical Literature Hierarchically
Xin Liu | Qingcai Chen | Junying Chen | Wenxiu Zhou | Tingyu Liu | Xinlan Yang | Weihua Peng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Integrating knowledge into text is a promising way to enrich text representation, especially in the medical field. However, undifferentiated knowledge not only confuses the text representation but also imports unexpected noises. In this paper, to alleviate this problem, we propose leveraging capsule routing to associate knowledge with medical literature hierarchically (called HiCapsRKL). Firstly, HiCapsRKL extracts two empirically designed text fragments from medical literature and encodes them into fragment representations respectively. Secondly, the capsule routing algorithm is applied to two fragment representations. Through the capsule computing and dynamic routing, each representation is processed into a new representation (denoted as caps-representation), and we integrate the caps-representations as information gain to associate knowledge with medical literature hierarchically. Finally, HiCapsRKL are validated on relevance prediction and medical literature retrieval test sets. The experimental results and analyses show that HiCapsRKLcan more accurately associate knowledge with medical literature than mainstream methods. In summary, HiCapsRKL can efficiently help selecting the most relevant knowledge to the medical literature, which may be an alternative attempt to improve knowledge-based text representation. Source code is released on GitHub.

pdf bib
Multi-hop Graph Convolutional Network with High-order Chebyshev Approximation for Text Reasoning
Shuoran Jiang | Qingcai Chen | Xin Liu | Baotian Hu | Lisai Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Graph convolutional network (GCN) has become popular in various natural language processing (NLP) tasks with its superiority in long-term and non-consecutive word interactions. However, existing single-hop graph reasoning in GCN may miss some important non-consecutive dependencies. In this study, we define the spectral graph convolutional network with the high-order dynamic Chebyshev approximation (HDGCN), which augments the multi-hop graph reasoning by fusing messages aggregated from direct and long-term dependencies into one convolutional layer. To alleviate the over-smoothing in high-order Chebyshev approximation, a multi-vote-based cross-attention (MVCAttn) with linear computation complexity is also proposed. The empirical results on four transductive and inductive NLP tasks and the ablation study verify the efficacy of the proposed model.

2020

pdf bib
MedWriter: Knowledge-Aware Medical Text Generation
Youcheng Pan | Qingcai Chen | Weihua Peng | Xiaolong Wang | Baotian Hu | Xin Liu | Junying Chen | Wenxiu Zhou
Proceedings of the 28th International Conference on Computational Linguistics

To exploit the domain knowledge to guarantee the correctness of generated text has been a hot topic in recent years, especially for high professional domains such as medical. However, most of recent works only consider the information of unstructured text rather than structured information of the knowledge graph. In this paper, we focus on the medical topic-to-text generation task and adapt a knowledge-aware text generation model to the medical domain, named MedWriter, which not only introduces the specific knowledge from the external MKG but also is capable of learning graph-level representation. We conduct experiments on a medical literature dataset collected from medical journals, each of which has a set of topic words, an abstract of medical literature and a corresponding knowledge graph from CMeKG. Experimental results demonstrate incorporating knowledge graph into generation model can improve the quality of the generated text and has robust superiority over the competitor methods.

pdf bib
Towards Medical Machine Reading Comprehension with Structural Knowledge and Plain Text
Dongfang Li | Baotian Hu | Qingcai Chen | Weihua Peng | Anqi Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Machine reading comprehension (MRC) has achieved significant progress on the open domain in recent years, mainly due to large-scale pre-trained language models. However, it performs much worse in specific domains such as the medical field due to the lack of extensive training data and professional structural knowledge neglect. As an effort, we first collect a large scale medical multi-choice question dataset (more than 21k instances) for the National Licensed Pharmacist Examination in China. It is a challenging medical examination with a passing rate of less than 14.2% in 2018. Then we propose a novel reading comprehension model KMQA, which can fully exploit the structural medical knowledge (i.e., medical knowledge graph) and the reference medical plain text (i.e., text snippets retrieved from reference books). The experimental results indicate that the KMQA outperforms existing competitive models with a large margin and passes the exam with 61.8% accuracy rate on the test set.

2019

pdf bib
A Deep Learning-Based System for PharmaCoNER
Ying Xiong | Yedan Shen | Yuanhang Huang | Shuai Chen | Buzhou Tang | Xiaolong Wang | Qingcai Chen | Jun Yan | Yi Zhou
Proceedings of The 5th Workshop on BioNLP Open Shared Tasks

The Biological Text Mining Unit at BSC and CNIO organized the first shared task on chemical & drug mention recognition from Spanish medical texts called PharmaCoNER (Pharmacological Substances, Compounds and proteins and Named Entity Recognition track) in 2019, which includes two tracks: one for NER offset and entity classification (track 1) and the other one for concept indexing (track 2). We developed a pipeline system based on deep learning methods for this shared task, specifically, a subsystem based on BERT (Bidirectional Encoder Representations from Transformers) for NER offset and entity classification and a subsystem based on Bpool (Bi-LSTM with max/mean pooling) for concept indexing. Evaluation conducted on the shared task data showed that our system achieves a micro-average F1-score of 0.9105 on track 1 and a micro-average F1-score of 0.8391 on track 2.

pdf bib
Trigger Word Detection and Thematic Role Identification via BERT and Multitask Learning
Dongfang Li | Ying Xiong | Baotian Hu | Hanyang Du | Buzhou Tang | Qingcai Chen
Proceedings of The 5th Workshop on BioNLP Open Shared Tasks

The prediction of the relationship between the disease with genes and its mutations is a very important knowledge extraction task that can potentially help drug discovery. In this paper, we present our approaches for trigger word detection (task 1) and the identification of its thematic role (task 2) in AGAC track of BioNLP Open Shared Task 2019. Task 1 can be regarded as the traditional name entity recognition (NER), which cultivates molecular phenomena related to gene mutation. Task 2 can be regarded as relation extraction which captures the thematic roles between entities. For two tasks, we exploit the pre-trained biomedical language representation model (i.e., BERT) in the pipe of information extraction for the collection of mutation-disease knowledge from PubMed. And also, we design a fine-tuning technique and extra features by using multi-task learning. The experiment results show that our proposed approaches achieve 0.60 (ranks 1) and 0.25 (ranks 2) on task 1 and task 2 respectively in terms of F1 metric.

2018

pdf bib
LCQMC:A Large-scale Chinese Question Matching Corpus
Xin Liu | Qingcai Chen | Chong Deng | Huajun Zeng | Jing Chen | Dongfang Li | Buzhou Tang
Proceedings of the 27th International Conference on Computational Linguistics

The lack of large-scale question matching corpora greatly limits the development of matching methods in question answering (QA) system, especially for non-English languages. To ameliorate this situation, in this paper, we introduce a large-scale Chinese question matching corpus (named LCQMC), which is released to the public1. LCQMC is more general than paraphrase corpus as it focuses on intent matching rather than paraphrase. How to collect a large number of question pairs in variant linguistic forms, which may present the same intent, is the key point for such corpus construction. In this paper, we first use a search engine to collect large-scale question pairs related to high-frequency words from various domains, then filter irrelevant pairs by the Wasserstein distance, and finally recruit three annotators to manually check the left pairs. After this process, a question matching corpus that contains 260,068 question pairs is constructed. In order to verify the LCQMC corpus, we split it into three parts, i.e., a training set containing 238,766 question pairs, a development set with 8,802 question pairs, and a test set with 12,500 question pairs, and test several well-known sentence matching methods on it. The experimental results not only demonstrate the good quality of LCQMC but also provide solid baseline performance for further researches on this corpus.

pdf bib
The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification
Jing Chen | Qingcai Chen | Xin Liu | Haijun Yang | Daohe Lu | Buzhou Tang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This paper introduces the Bank Question (BQ) corpus, a Chinese corpus for sentence semantic equivalence identification (SSEI). The BQ corpus contains 120,000 question pairs from 1-year online bank custom service logs. To efficiently process and annotate questions from such a large scale of logs, this paper proposes a clustering based annotation method to achieve questions with the same intent. First, the deduplicated questions with the same answer are clustered into stacks by the Word Mover’s Distance (WMD) based Affinity Propagation (AP) algorithm. Then, the annotators are asked to assign the clustered questions into different intent categories. Finally, the positive and negative question pairs for SSEI are selected in the same intent category and between different intent categories respectively. We also present six SSEI benchmark performance on our corpus, including state-of-the-art algorithms. As the largest manually annotated public Chinese SSEI corpus in the bank domain, the BQ corpus is not only useful for Chinese question semantic matching research, but also a significant resource for cross-lingual and cross-domain SSEI research. The corpus is available in public.

2016

pdf bib
Incorporating Label Dependency for Answer Quality Tagging in Community Question Answering via CNN-LSTM-CRF
Yang Xiang | Xiaoqiang Zhou | Qingcai Chen | Zhihui Zheng | Buzhou Tang | Xiaolong Wang | Yang Qin
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

In community question answering (cQA), the quality of answers are determined by the matching degree between question-answer pairs and the correlation among the answers. In this paper, we show that the dependency between the answer quality labels also plays a pivotal role. To validate the effectiveness of label dependency, we propose two neural network-based models, with different combination modes of Convolutional Neural Net-works, Long Short Term Memory and Conditional Random Fields. Extensive experi-ments are taken on the dataset released by the SemEval-2015 cQA shared task. The first model is a stacked ensemble of the networks. It achieves 58.96% on macro averaged F1, which improves the state-of-the-art neural network-based method by 2.82% and outper-forms the Top-1 system in the shared task by 1.77%. The second is a simple attention-based model whose input is the connection of the question and its corresponding answers. It produces promising results with 58.29% on overall F1 and gains the best performance on the Good and Bad categories.

2015

pdf bib
LCSTS: A Large Scale Chinese Short Text Summarization Dataset
Baotian Hu | Qingcai Chen | Fangze Zhu
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Context-Dependent Translation Selection Using Convolutional Neural Network
Baotian Hu | Zhaopeng Tu | Zhengdong Lu | Hang Li | Qingcai Chen
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

pdf bib
Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering
Xiaoqiang Zhou | Baotian Hu | Qingcai Chen | Buzhou Tang | Xiaolong Wang
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

pdf bib
HITSZ-ICRC: Exploiting Classification Approach for Answer Selection in Community Question Answering
Yongshuai Hou | Cong Tan | Xiaolong Wang | Yaoyun Zhang | Jun Xu | Qingcai Chen
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)

pdf bib
HITSZ-ICRC: An Integration Approach for QA TempEval Challenge
Yongshuai Hou | Cong Tan | Qingcai Chen | Xiaolong Wang
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)

2014

pdf bib
Hybrid Deep Belief Networks for Semi-supervised Sentiment Classification
Shusen Zhou | Qingcai Chen | Xiaolong Wang | Xiaoling Li
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2013

pdf bib
Automatic Corpora Construction for Text Classification
Dandan Wang | Qingcai Chen | Xiaolong Wang | Bingyang Yu
Proceedings of the Sixth International Joint Conference on Natural Language Processing

2012

pdf bib
A Mixed Deterministic Model for Coreference Resolution
Bo Yuan | Qingcai Chen | Yang Xiang | Xiaolong Wang | Liping Ge | Zengjian Liu | Meng Liao | Xianbo Si
Joint Conference on EMNLP and CoNLL - Shared Task

2010

pdf bib
Active Deep Networks for Semi-Supervised Sentiment Classification
Shusen Zhou | Qingcai Chen | Xiaolong Wang
Coling 2010: Posters