Qingsong Ma


pdf bib
Findings of the WMT 2023 Shared Task on Discourse-Level Literary Translation: A Fresh Orb in the Cosmos of LLMs
Longyue Wang | Zhaopeng Tu | Yan Gu | Siyou Liu | Dian Yu | Qingsong Ma | Chenyang Lyu | Liting Zhou | Chao-Hong Liu | Yufeng Ma | Weiyu Chen | Yvette Graham | Bonnie Webber | Philipp Koehn | Andy Way | Yulin Yuan | Shuming Shi
Proceedings of the Eighth Conference on Machine Translation

Translating literary works has perennially stood as an elusive dream in machine translation (MT), a journey steeped in intricate challenges. To foster progress in this domain, we hold a new shared task at WMT 2023, the first edition of the Discourse-Level Literary Translation. First, we (Tencent AI Lab and China Literature Ltd.) release a copyrighted and document-level Chinese-English web novel corpus. Furthermore, we put forth an industry-endorsed criteria to guide human evaluation process. This year, we totally received 14 submissions from 7 academia and industry teams. We employ both automatic and human evaluations to measure the performance of the submitted systems. The official ranking of the systems is based on the overall human judgments. In addition, our extensive analysis reveals a series of interesting findings on literary and discourse-aware MT. We release data, system outputs, and leaderboard at http://www2.statmt.org/wmt23/literary-translation-task.html.


pdf bib
Results of the WMT20 Metrics Shared Task
Nitika Mathur | Johnny Wei | Markus Freitag | Qingsong Ma | Ondřej Bojar
Proceedings of the Fifth Conference on Machine Translation

This paper presents the results of the WMT20 Metrics Shared Task. Participants were asked to score the outputs of the translation systems competing in the WMT20 News Translation Task with automatic metrics. Ten research groups submitted 27 metrics, four of which are reference-less “metrics”. In addition, we computed five baseline metrics, including sentBLEU, BLEU, TER and using the SacreBLEU scorer. All metrics were evaluated on how well they correlate at the system-, document- and segment-level with the WMT20 official human scores. We present an extensive analysis on influence of different reference translations on metric reliability, how well automatic metrics score human translations, and we also flag major discrepancies between metric and human scores when evaluating MT systems. Finally, we investigate whether we can use automatic metrics to flag incorrect human ratings.

pdf bib
Tencent submission for WMT20 Quality Estimation Shared Task
Haijiang Wu | Zixuan Wang | Qingsong Ma | Xinjie Wen | Ruichen Wang | Xiaoli Wang | Yulin Zhang | Zhipeng Yao | Siyao Peng
Proceedings of the Fifth Conference on Machine Translation

This paper presents Tencent’s submission to the WMT20 Quality Estimation (QE) Shared Task: Sentence-Level Post-editing Effort for English-Chinese in Task 2. Our system ensembles two architectures, XLM-based and Transformer-based Predictor-Estimator models. For the XLM-based Predictor-Estimator architecture, the predictor produces two types of contextualized token representations, i.e., masked XLM and non-masked XLM; the LSTM-estimator and Transformer-estimator employ two effective strategies, top-K and multi-head attention, to enhance the sentence feature representation. For Transformer-based Predictor-Estimator architecture, we improve a top-performing model by conducting three modifications: using multi-decoding in machine translation module, creating a new model by replacing the transformer-based predictor with XLM-based predictor, and finally integrating two models by a weighted average. Our submission achieves a Pearson correlation of 0.664, ranking first (tied) on English-Chinese.


pdf bib
Results of the WMT19 Metrics Shared Task: Segment-Level and Strong MT Systems Pose Big Challenges
Qingsong Ma | Johnny Wei | Ondřej Bojar | Yvette Graham
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper presents the results of the WMT19 Metrics Shared Task. Participants were asked to score the outputs of the translations systems competing in the WMT19 News Translation Task with automatic metrics. 13 research groups submitted 24 metrics, 10 of which are reference-less “metrics” and constitute submissions to the joint task with WMT19 Quality Estimation Task, “QE as a Metric”. In addition, we computed 11 baseline metrics, with 8 commonly applied baselines (BLEU, SentBLEU, NIST, WER, PER, TER, CDER, and chrF) and 3 reimplementations (chrF+, sacreBLEU-BLEU, and sacreBLEU-chrF). Metrics were evaluated on the system level, how well a given metric correlates with the WMT19 official manual ranking, and segment level, how well the metric correlates with human judgements of segment quality. This year, we use direct assessment (DA) as our only form of manual evaluation.


pdf bib
Results of the WMT18 Metrics Shared Task: Both characters and embeddings achieve good performance
Qingsong Ma | Ondřej Bojar | Yvette Graham
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper presents the results of the WMT18 Metrics Shared Task. We asked participants of this task to score the outputs of the MT systems involved in the WMT18 News Translation Task with automatic metrics. We collected scores of 10 metrics and 8 research groups. In addition to that, we computed scores of 8 standard metrics (BLEU, SentBLEU, chrF, NIST, WER, PER, TER and CDER) as baselines. The collected scores were evaluated in terms of system-level correlation (how well each metric’s scores correlate with WMT18 official manual ranking of systems) and in terms of segment-level correlation (how often a metric agrees with humans in judging the quality of a particular sentence relative to alternate outputs). This year, we employ a single kind of manual evaluation: direct assessment (DA).


pdf bib
Improving Evaluation of Document-level Machine Translation Quality Estimation
Yvette Graham | Qingsong Ma | Timothy Baldwin | Qun Liu | Carla Parra | Carolina Scarton
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

Meaningful conclusions about the relative performance of NLP systems are only possible if the gold standard employed in a given evaluation is both valid and reliable. In this paper, we explore the validity of human annotations currently employed in the evaluation of document-level quality estimation for machine translation (MT). We demonstrate the degree to which MT system rankings are dependent on weights employed in the construction of the gold standard, before proposing direct human assessment as a valid alternative. Experiments show direct assessment (DA) scores for documents to be highly reliable, achieving a correlation of above 0.9 in a self-replication experiment, in addition to a substantial estimated cost reduction through quality controlled crowd-sourcing. The original gold standard based on post-edits incurs a 10–20 times greater cost than DA.

pdf bib
Further Investigation into Reference Bias in Monolingual Evaluation of Machine Translation
Qingsong Ma | Yvette Graham | Timothy Baldwin | Qun Liu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Monolingual evaluation of Machine Translation (MT) aims to simplify human assessment by requiring assessors to compare the meaning of the MT output with a reference translation, opening up the task to a much larger pool of genuinely qualified evaluators. Monolingual evaluation runs the risk, however, of bias in favour of MT systems that happen to produce translations superficially similar to the reference and, consistent with this intuition, previous investigations have concluded monolingual assessment to be strongly biased in this respect. On re-examination of past analyses, we identify a series of potential analytical errors that force some important questions to be raised about the reliability of past conclusions, however. We subsequently carry out further investigation into reference bias via direct human assessment of MT adequacy via quality controlled crowd-sourcing. Contrary to both intuition and past conclusions, results for show no significant evidence of reference bias in monolingual evaluation of MT.

pdf bib
Blend: a Novel Combined MT Metric Based on Direct Assessment — CASICT-DCU submission to WMT17 Metrics Task
Qingsong Ma | Yvette Graham | Shugen Wang | Qun Liu
Proceedings of the Second Conference on Machine Translation


pdf bib
CASICT-DCU Participation in WMT2015 Metrics Task
Hui Yu | Qingsong Ma | Xiaofeng Wu | Qun Liu
Proceedings of the Tenth Workshop on Statistical Machine Translation