Qinliang Su


2021

pdf bib
Learning to Answer Psychological Questionnaire for Personality Detection
Feifan Yang | Tao Yang | Xiaojun Quan | Qinliang Su
Findings of the Association for Computational Linguistics: EMNLP 2021

Existing text-based personality detection research mostly relies on data-driven approaches to implicitly capture personality cues in online posts, lacking the guidance of psychological knowledge. Psychological questionnaire, which contains a series of dedicated questions highly related to personality traits, plays a critical role in self-report personality assessment. We argue that the posts created by a user contain critical contents that could help answer the questions in a questionnaire, resulting in an assessment of his personality by linking the texts and the questionnaire. To this end, we propose a new model named Psychological Questionnaire enhanced Network (PQ-Net) to guide personality detection by tracking critical information in texts with a questionnaire. Specifically, PQ-Net contains two streams: a context stream to encode each piece of text into a contextual text representation, and a questionnaire stream to capture relevant information in the contextual text representation to generate potential answer representations for a questionnaire. The potential answer representations are used to enhance the contextual text representation and to benefit personality prediction. Experimental results on two datasets demonstrate the superiority of PQ-Net in capturing useful cues from the posts for personality detection.

pdf bib
Refining BERT Embeddings for Document Hashing via Mutual Information Maximization
Zijing Ou | Qinliang Su | Jianxing Yu | Ruihui Zhao | Yefeng Zheng | Bang Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Existing unsupervised document hashing methods are mostly established on generative models. Due to the difficulties of capturing long dependency structures, these methods rarely model the raw documents directly, but instead to model the features extracted from them (e.g. bag-of-words (BOG), TFIDF). In this paper, we propose to learn hash codes from BERT embeddings after observing their tremendous successes on downstream tasks. As a first try, we modify existing generative hashing models to accommodate the BERT embeddings. However, little improvement is observed over the codes learned from the old BOG or TFIDF features. We attribute this to the reconstruction requirement in the generative hashing, which will enforce irrelevant information that is abundant in the BERT embeddings also compressed into the codes. To remedy this issue, a new unsupervised hashing paradigm is further proposed based on the mutual information (MI) maximization principle. Specifically, the method first constructs appropriate global and local codes from the documents and then seeks to maximize their mutual information. Experimental results on three benchmark datasets demonstrate that the proposed method is able to generate hash codes that outperform existing ones learned from BOG features by a substantial margin.

pdf bib
Integrating Semantics and Neighborhood Information with Graph-Driven Generative Models for Document Retrieval
Zijing Ou | Qinliang Su | Jianxing Yu | Bang Liu | Jingwen Wang | Ruihui Zhao | Changyou Chen | Yefeng Zheng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

With the need of fast retrieval speed and small memory footprint, document hashing has been playing a crucial role in large-scale information retrieval. To generate high-quality hashing code, both semantics and neighborhood information are crucial. However, most existing methods leverage only one of them or simply combine them via some intuitive criteria, lacking a theoretical principle to guide the integration process. In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model. To deal with the complicated correlations among documents, we further propose a tree-structured approximation method for learning. Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones. Extensive experimental results on three benchmark datasets show that our method achieves superior performance over state-of-the-art methods, demonstrating the effectiveness of the proposed model for simultaneously preserving semantic and neighborhood information.

pdf bib
Syntax-Enhanced Pre-trained Model
Zenan Xu | Daya Guo | Duyu Tang | Qinliang Su | Linjun Shou | Ming Gong | Wanjun Zhong | Xiaojun Quan | Daxin Jiang | Nan Duan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning stage, so that they suffer from discrepancy between the two stages. Such a problem would lead to the necessity of having human-annotated syntactic information, which limits the application of existing methods to broader scenarios. To address this, we present a model that utilizes the syntax of text in both pre-training and fine-tuning stages. Our model is based on Transformer with a syntax-aware attention layer that considers the dependency tree of the text. We further introduce a new pre-training task of predicting the syntactic distance among tokens in the dependency tree. We evaluate the model on three downstream tasks, including relation classification, entity typing, and question answering. Results show that our model achieves state-of-the-art performance on six public benchmark datasets. We have two major findings. First, we demonstrate that infusing automatically produced syntax of text improves pre-trained models. Second, global syntactic distances among tokens bring larger performance gains compared to local head relations between contiguous tokens.

2020

pdf bib
Generative Semantic Hashing Enhanced via Boltzmann Machines
Lin Zheng | Qinliang Su | Dinghan Shen | Changyou Chen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generative semantic hashing is a promising technique for large-scale information retrieval thanks to its fast retrieval speed and small memory footprint. For the tractability of training, existing generative-hashing methods mostly assume a factorized form for the posterior distribution, enforcing independence among the bits of hash codes. From the perspectives of both model representation and code space size, independence is always not the best assumption. In this paper, to introduce correlations among the bits of hash codes, we propose to employ the distribution of Boltzmann machine as the variational posterior. To address the intractability issue of training, we first develop an approximate method to reparameterize the distribution of a Boltzmann machine by augmenting it as a hierarchical concatenation of a Gaussian-like distribution and a Bernoulli distribution. Based on that, an asymptotically-exact lower bound is further derived for the evidence lower bound (ELBO). With these novel techniques, the entire model can be optimized efficiently. Extensive experimental results demonstrate that by effectively modeling correlations among different bits within a hash code, our model can achieve significant performance gains.

pdf bib
Low-Resource Generation of Multi-hop Reasoning Questions
Jianxing Yu | Wei Liu | Shuang Qiu | Qinliang Su | Kai Wang | Xiaojun Quan | Jian Yin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper focuses on generating multi-hop reasoning questions from the raw text in a low resource circumstance. Such questions have to be syntactically valid and need to logically correlate with the answers by deducing over multiple relations on several sentences in the text. Specifically, we first build a multi-hop generation model and guide it to satisfy the logical rationality by the reasoning chain extracted from a given text. Since the labeled data is limited and insufficient for training, we propose to learn the model with the help of a large scale of unlabeled data that is much easier to obtain. Such data contains rich expressive forms of the questions with structural patterns on syntax and semantics. These patterns can be estimated by the neural hidden semi-Markov model using latent variables. With latent patterns as a prior, we can regularize the generation model and produce the optimal results. Experimental results on the HotpotQA data set demonstrate the effectiveness of our model. Moreover, we apply the generated results to the task of machine reading comprehension and achieve significant performance improvements.

pdf bib
Constituency Lattice Encoding for Aspect Term Extraction
Yunyi Yang | Kun Li | Xiaojun Quan | Weizhou Shen | Qinliang Su
Proceedings of the 28th International Conference on Computational Linguistics

One of the remaining challenges for aspect term extraction in sentiment analysis resides in the extraction of phrase-level aspect terms, which is non-trivial to determine the boundaries of such terms. In this paper, we aim to address this issue by incorporating the span annotations of constituents of a sentence to leverage the syntactic information in neural network models. To this end, we first construct a constituency lattice structure based on the constituents of a constituency tree. Then, we present two approaches to encoding the constituency lattice using BiLSTM-CRF and BERT as the base models, respectively. We experimented on two benchmark datasets to evaluate the two models, and the results confirm their superiority with respective 3.17 and 1.35 points gained in F1-Measure over the current state of the art. The improvements justify the effectiveness of the constituency lattice for aspect term extraction.

pdf bib
Embedding Dynamic Attributed Networks by Modeling the Evolution Processes
Zenan Xu | Zijing Ou | Qinliang Su | Jianxing Yu | Xiaojun Quan | ZhenKun Lin
Proceedings of the 28th International Conference on Computational Linguistics

Network embedding has recently emerged as a promising technique to embed nodes of a network into low-dimensional vectors. While fairly successful, most existing works focus on the embedding techniques for static networks. But in practice, there are many networks that are evolving over time and hence are dynamic, e.g., the social networks. To address this issue, a high-order spatio-temporal embedding model is developed to track the evolutions of dynamic networks. Specifically, an activeness-aware neighborhood embedding method is first proposed to extract the high-order neighborhood information at each given timestamp. Then, an embedding prediction framework is further developed to capture the temporal correlations, in which the attention mechanism is employed instead of recurrent neural networks (RNNs) for its efficiency in computing and flexibility in modeling. Extensive experiments are conducted on four real-world datasets from three different areas. It is shown that the proposed method outperforms all the baselines by a substantial margin for the tasks of dynamic link prediction and node classification, which demonstrates the effectiveness of the proposed methods on tracking the evolutions of dynamic networks.

2019

pdf bib
A Deep Neural Information Fusion Architecture for Textual Network Embeddings
Zenan Xu | Qinliang Su | Xiaojun Quan | Weijia Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Textual network embeddings aim to learn a low-dimensional representation for every node in the network so that both the structural and textual information from the networks can be well preserved in the representations. Traditionally, the structural and textual embeddings were learned by models that rarely take the mutual influences between them into account. In this paper, a deep neural architecture is proposed to effectively fuse the two kinds of informations into one representation. The novelties of the proposed architecture are manifested in the aspects of a newly defined objective function, the complementary information fusion method for structural and textual features, and the mutual gate mechanism for textual feature extraction. Experimental results show that the proposed model outperforms the comparing methods on all three datasets.

pdf bib
Document Hashing with Mixture-Prior Generative Models
Wei Dong | Qinliang Su | Dinghan Shen | Changyou Chen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Hashing is promising for large-scale information retrieval tasks thanks to the efficiency of distance evaluation between binary codes. Generative hashing is often used to generate hashing codes in an unsupervised way. However, existing generative hashing methods only considered the use of simple priors, like Gaussian and Bernoulli priors, which limits these methods to further improve their performance. In this paper, two mixture-prior generative models are proposed, under the objective to produce high-quality hashing codes for documents. Specifically, a Gaussian mixture prior is first imposed onto the variational auto-encoder (VAE), followed by a separate step to cast the continuous latent representation of VAE into binary code. To avoid the performance loss caused by the separate casting, a model using a Bernoulli mixture prior is further developed, in which an end-to-end training is admitted by resorting to the straight-through (ST) discrete gradient estimator. Experimental results on several benchmark datasets demonstrate that the proposed methods, especially the one using Bernoulli mixture priors, consistently outperform existing ones by a substantial margin.

2018

pdf bib
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
Dinghan Shen | Guoyin Wang | Wenlin Wang | Martin Renqiang Min | Qinliang Su | Yizhe Zhang | Chunyuan Li | Ricardo Henao | Lawrence Carin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many deep learning architectures have been proposed to model the compositionality in text sequences, requiring substantial number of parameters and expensive computations. However, there has not been a rigorous evaluation regarding the added value of sophisticated compositional functions. In this paper, we conduct a point-by-point comparative study between Simple Word-Embedding-based Models (SWEMs), consisting of parameter-free pooling operations, relative to word-embedding-based RNN/CNN models. Surprisingly, SWEMs exhibit comparable or even superior performance in the majority of cases considered. Based upon this understanding, we propose two additional pooling strategies over learned word embeddings: (i) a max-pooling operation for improved interpretability; and (ii) a hierarchical pooling operation, which preserves spatial (n-gram) information within text sequences. We present experiments on 17 datasets encompassing three tasks: (i) (long) document classification; (ii) text sequence matching; and (iii) short text tasks, including classification and tagging.

pdf bib
NASH: Toward End-to-End Neural Architecture for Generative Semantic Hashing
Dinghan Shen | Qinliang Su | Paidamoyo Chapfuwa | Wenlin Wang | Guoyin Wang | Ricardo Henao | Lawrence Carin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Semantic hashing has become a powerful paradigm for fast similarity search in many information retrieval systems. While fairly successful, previous techniques generally require two-stage training, and the binary constraints are handled ad-hoc. In this paper, we present an end-to-end Neural Architecture for Semantic Hashing (NASH), where the binary hashing codes are treated as Bernoulli latent variables. A neural variational inference framework is proposed for training, where gradients are directly backpropagated through the discrete latent variable to optimize the hash function. We also draw the connections between proposed method and rate-distortion theory, which provides a theoretical foundation for the effectiveness of our framework. Experimental results on three public datasets demonstrate that our method significantly outperforms several state-of-the-art models on both unsupervised and supervised scenarios.

2017

pdf bib
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan | Chunyuan Li | Changyou Chen | Yunchen Pu | Qinliang Su | Lawrence Carin
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recurrent neural networks (RNNs) have shown promising performance for language modeling. However, traditional training of RNNs using back-propagation through time often suffers from overfitting. One reason for this is that stochastic optimization (used for large training sets) does not provide good estimates of model uncertainty. This paper leverages recent advances in stochastic gradient Markov Chain Monte Carlo (also appropriate for large training sets) to learn weight uncertainty in RNNs. It yields a principled Bayesian learning algorithm, adding gradient noise during training (enhancing exploration of the model-parameter space) and model averaging when testing. Extensive experiments on various RNN models and across a broad range of applications demonstrate the superiority of the proposed approach relative to stochastic optimization.