Qipeng Guo


2023

pdf bib
An AMR-based Link Prediction Approach for Document-level Event Argument Extraction
Yuqing Yang | Qipeng Guo | Xiangkun Hu | Yue Zhang | Xipeng Qiu | Zheng Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent works have introduced Abstract Meaning Representation (AMR) for Document-level Event Argument Extraction (Doc-level EAE), since AMR provides a useful interpretation of complex semantic structures and helps to capture long-distance dependency. However, in these works AMR is used only implicitly, for instance, as additional features or training signals. Motivated by the fact that all event structures can be inferred from AMR, this work reformulates EAE as a link prediction problem on AMR graphs. Since AMR is a generic structure and does not perfectly suit EAE, we propose a novel graph structure, Tailored AMR Graph (TAG), which compresses less informative subgraphs and edge types, integrates span information, and highlights surrounding events in the same document. With TAG, we further propose a novel method using graph neural networks as a link prediction model to find event arguments. Our extensive experiments on WikiEvents and RAMS show that this simpler approach outperforms the state-of-the-art models by 3.63pt and 2.33pt F1, respectively, and do so with reduced 56% inference time.

pdf bib
Dual Cache for Long Document Neural Coreference Resolution
Qipeng Guo | Xiangkun Hu | Yue Zhang | Xipeng Qiu | Zheng Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent works show the effectiveness of cache-based neural coreference resolution models on long documents. These models incrementally process a long document from left to right and extract relations between mentions and entities in a cache, resulting in much lower memory and computation cost compared to computing all mentions in parallel. However, they do not handle cache misses when high-quality entities are purged from the cache, which causes wrong assignments and leads to prediction errors. We propose a new hybrid cache that integrates two eviction policies to capture global and local entities separately, and effectively reduces the aggregated cache misses up to half as before, while improving F1 score of coreference by 0.7 5.7pt. As such, the hybrid policy can accelerate existing cache-based models and offer a new long document coreference resolution solution. Results show that our method outperforms existing methods on four benchmarks while saving up to 83% of inference time against non-cache-based models. Further, we achieve a new state-of-the-art on a long document coreference benchmark, LitBank.

pdf bib
Exploiting Abstract Meaning Representation for Open-Domain Question Answering
Cunxiang Wang | Zhikun Xu | Qipeng Guo | Xiangkun Hu | Xuefeng Bai | Zheng Zhang | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2023

The Open-Domain Question Answering (ODQA) task involves retrieving and subsequently generating answers from fine-grained relevant passages within a database. Current systems leverage Pretrained Language Models (PLMs) to model the relationship between questions and passages. However, the diversity in surface form expressions can hinder the model’s ability to capture accurate correlations, especially within complex contexts. Therefore, we utilize Abstract Meaning Representation (AMR) graphs to assist the model in understanding complex semantic information. We introduce a method known as Graph-as-Token (GST) to incorporate AMRs into PLMs. Results from Natural Questions (NQ) and TriviaQA (TQ) demonstrate that our GST method can significantly improve performance, resulting in up to 2.44/3.17 Exact Match score improvements on NQ/TQ respectively. Furthermore, our method enhances robustness and outperforms alternative Graph Neural Network (GNN) methods for integrating AMRs. To the best of our knowledge, we are the first to employ semantic graphs in ODQA.

pdf bib
Do Large Language Models Know What They Don’t Know?
Zhangyue Yin | Qiushi Sun | Qipeng Guo | Jiawen Wu | Xipeng Qiu | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2023

Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks. Current research focuses on enhancing their performance within their existing knowledge. Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend. Therefore, the ability to understand their own limitations on the unknows, referred to as self-knowledge, is of paramount importance. This study aims to evaluate LLMs’ self-knowledge by assessing their ability to identify unanswerable or unknowable questions. We introduce an automated methodology to detect uncertainty in the responses of these models, providing a novel measure of their self-knowledge. We further introduce a unique dataset, SelfAware, consisting of unanswerable questions from five diverse categories and their answerable counterparts. Our extensive analysis, involving 20 LLMs including GPT-3, InstructGPT, and LLaMA, discovering an intrinsic capacity for self-knowledge within these models. Moreover, we demonstrate that in-context learning and instruction tuning can further enhance this self-knowledge. Despite this promising insight, our findings also highlight a considerable gap between the capabilities of these models and human proficiency in recognizing the limits of their knowledge.

pdf bib
Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus
Tianhang Zhang | Lin Qiu | Qipeng Guo | Cheng Deng | Yue Zhang | Zheng Zhang | Chenghu Zhou | Xinbing Wang | Luoyi Fu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields. However, LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations in many real-world applications. Existing works for detecting hallucinations in LLMs either rely on external knowledge for reference retrieval or require sampling multiple responses from the LLM for consistency verification, making these methods costly and inefficient. In this paper, we propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs. Our approach imitates human focus in factuality checking from three aspects: 1) focus on the most informative and important keywords in the given text; 2) focus on the unreliable tokens in historical context which may lead to a cascade of hallucinations; and 3) focus on the token properties such as token type and token frequency. Experimental results on relevant datasets demonstrate the effectiveness of our proposed method, which achieves state-of-the-art performance across all the evaluation metrics and eliminates the need for additional information.

pdf bib
Plan, Verify and Switch: Integrated Reasoning with Diverse X-of-Thoughts
Tengxiao Liu | Qipeng Guo | Yuqing Yang | Xiangkun Hu | Yue Zhang | Xipeng Qiu | Zheng Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

As large language models (LLMs) have shown effectiveness with different prompting methods, such as Chain of Thought, Program of Thought, we find that these methods have formed a great complementarity to each other on math reasoning tasks. In this work, we propose XoT, an integrated problem solving framework by prompting LLMs with diverse reasoning thoughts. For each question, XoT always begins with selecting the most suitable method then executes each method iteratively. Within each iteration, XoT actively checks the validity of the generated answer and incorporates the feedback from external executors, allowing it to dynamically switch among different prompting methods. Through extensive experiments on 10 popular math reasoning datasets, we demonstrate the effectiveness of our proposed approach and thoroughly analyze the strengths of each module. Moreover, empirical results suggest that our framework is orthogonal to recent work that makes improvements on single reasoning methods and can further generalise to logical reasoning domain. By allowing method switching, XoT provides a fresh perspective on the collaborative integration of diverse reasoning thoughts in a unified framework.

pdf bib
StoryAnalogy: Deriving Story-level Analogies from Large Language Models to Unlock Analogical Understanding
Cheng Jiayang | Lin Qiu | Tsz Chan | Tianqing Fang | Weiqi Wang | Chunkit Chan | Dongyu Ru | Qipeng Guo | Hongming Zhang | Yangqiu Song | Yue Zhang | Zheng Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, StoryAnalogy, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on StoryAnalogy, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are incredibly difficult not only for sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around 30% accuracy in multiple-choice questions (compared to over 85% accuracy for humans). Furthermore, we observe that the data in StoryAnalogy can improve the quality of analogy generation in LLMs, where a fine-tuned FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.

pdf bib
Exchange-of-Thought: Enhancing Large Language Model Capabilities through Cross-Model Communication
Zhangyue Yin | Qiushi Sun | Cheng Chang | Qipeng Guo | Junqi Dai | Xuanjing Huang | Xipeng Qiu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have recently made significant strides in complex reasoning tasks through the Chain-of-Thought technique. Despite this progress, their reasoning is often constrained by their intrinsic understanding, lacking external insights. To address this, we propose Exchange-of-Thought (EoT), a novel framework that enables cross-model communication during problem-solving. Drawing inspiration from network topology, EoT integrates four unique communication paradigms: Memory, Report, Relay, and Debate. This paper delves into the communication dynamics and volume associated with each paradigm. To counterbalance the risks of incorrect reasoning chains, we implement a robust confidence evaluation mechanism within these communications. Our experiments across diverse complex reasoning tasks demonstrate that EoT significantly surpasses established baselines, underscoring the value of external insights in enhancing LLM performance. Furthermore, we show that EoT achieves these superior results in a cost-effective manner, marking a promising advancement for efficient and collaborative AI problem-solving.

pdf bib
CoLLiE: Collaborative Training of Large Language Models in an Efficient Way
Kai Lv | Shuo Zhang | Tianle Gu | Shuhao Xing | Jiawei Hong | Keyu Chen | Xiaoran Liu | Yuqing Yang | Honglin Guo | Tengxiao Liu | Yu Sun | Qipeng Guo | Hang Yan | Xipeng Qiu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Large language models (LLMs) are increasingly pivotal in a wide range of natural language processing tasks. Access to pre-trained models, courtesy of the open-source community, has made it possible to adapt these models to specific applications for enhanced performance. However, the substantial resources required for training these models necessitate efficient solutions. This paper introduces CoLLiE, an efficient library that facilitates collaborative training of large language models using 3D parallelism, parameter-efficient fine-tuning (PEFT) methods, and optimizers such as Lion, Adan, Sophia, and LOMO. With its modular design and comprehensive functionality, CoLLiE offers a balanced blend of efficiency, ease of use, and customization. CoLLiE has proven superior training efficiency in comparison with prevalent solutions in pre-training and fine-tuning scenarios. Furthermore, we provide an empirical evaluation of the correlation between model size and GPU memory consumption under different optimization methods, as well as an analysis of the throughput. Lastly, we carry out a comprehensive comparison of various optimizers and PEFT methods within the instruction-tuning context. CoLLiE is available at https://github.com/OpenLMLab/collie.

2022

pdf bib
RLET: A Reinforcement Learning Based Approach for Explainable QA with Entailment Trees
Tengxiao Liu | Qipeng Guo | Xiangkun Hu | Yue Zhang | Xipeng Qiu | Zheng Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Interpreting the reasoning process from questions to answers poses a challenge in approaching explainable QA. A recently proposed structured reasoning format, entailment tree, manages to offer explicit logical deductions with entailment steps in a tree structure. To generate entailment trees, prior single pass sequence-to-sequence models lack visible internal decision probability, while stepwise approaches are supervised with extracted single step data and cannot model the tree as a whole. In this work, we propose RLET, a Reinforcement Learning based Entailment Tree generation framework, which is trained utilising the cumulative signals across the whole tree. RLET iteratively performs single step reasoning with sentence selection and deduction generation modules, from which the training signal is accumulated across the tree with elaborately designed aligned reward function that is consistent with the evaluation. To the best of our knowledge, we are the first to introduce RL into the entailment tree generation task. Experiments on three settings of the EntailmentBank dataset demonstrate the strength of using RL framework.

pdf bib
Dialogue Meaning Representation for Task-Oriented Dialogue Systems
Xiangkun Hu | Junqi Dai | Hang Yan | Yi Zhang | Qipeng Guo | Xipeng Qiu | Zheng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Dialogue meaning representation formulates natural language utterance semantics in their conversational context in an explicit and machine-readable form. Previous work typically follows the intent-slot framework, which is easy for annotation yet limited in scalability for complex linguistic expressions. A line of works alleviates the representation issue by introducing hierarchical structures but challenging to express complex compositional semantics, such as negation and coreference. We propose Dialogue Meaning Representation (DMR), a pliable and easily extendable representation for task-oriented dialogue. Our representation contains a set of nodes and edges to represent rich compositional semantics. Moreover, we propose an inheritance hierarchy mechanism focusing on domain extensibility. Additionally, we annotated DMR-FastFood, a multi-turn dialogue dataset with more than 70k utterances, with DMR. We propose two evaluation tasks to evaluate different dialogue models and a novel coreference resolution model GNNCoref for the graph-based coreference resolution task. Experiments show that DMR can be parsed well with pre-trained Seq2Seq models, and GNNCoref outperforms the baseline models by a large margin. The dataset and code are available at https://github.com/amazon-research/dialogue-meaning-representation

pdf bib
DORE: Document Ordered Relation Extraction based on Generative Framework
Qipeng Guo | Yuqing Yang | Hang Yan | Xipeng Qiu | Zheng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

In recent years, there is a surge of generation-based information extraction work, which allows a more direct use of pre-trained language models and efficiently captures output dependencies. However, previous generative methods using lexical representation do not naturally fit document-level relation extraction (DocRE) where there are multiple entities and relational facts. In this paper, we investigate the root cause of the underwhelming performance of the existing generative DocRE models and discover that the culprit is the inadequacy of the training paradigm, instead of the capacities of the models. We propose to generate a symbolic and ordered sequence from the relation matrix which is deterministic and easier for model to learn. Moreover, we design a parallel row generation method to process overlong target sequences. Besides, we introduce several negative sampling strategies to improve the performance with balanced signals. Experimental results on four datasets show that our proposed method can improve the performance of the generative DocRE models.

2021

pdf bib
A Unified Generative Framework for Various NER Subtasks
Hang Yan | Tao Gui | Junqi Dai | Qipeng Guo | Zheng Zhang | Xipeng Qiu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Named Entity Recognition (NER) is the task of identifying spans that represent entities in sentences. Whether the entity spans are nested or discontinuous, the NER task can be categorized into the flat NER, nested NER, and discontinuous NER subtasks. These subtasks have been mainly solved by the token-level sequence labelling or span-level classification. However, these solutions can hardly tackle the three kinds of NER subtasks concurrently. To that end, we propose to formulate the NER subtasks as an entity span sequence generation task, which can be solved by a unified sequence-to-sequence (Seq2Seq) framework. Based on our unified framework, we can leverage the pre-trained Seq2Seq model to solve all three kinds of NER subtasks without the special design of the tagging schema or ways to enumerate spans. We exploit three types of entity representations to linearize entities into a sequence. Our proposed framework is easy-to-implement and achieves state-of-the-art (SoTA) or near SoTA performance on eight English NER datasets, including two flat NER datasets, three nested NER datasets, and three discontinuous NER datasets.

2020

pdf bib
BERT-ATTACK: Adversarial Attack Against BERT Using BERT
Linyang Li | Ruotian Ma | Qipeng Guo | Xiangyang Xue | Xipeng Qiu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack methods for texts usually adopt heuristic replacement strategies on the character or word level, which remains challenging to find the optimal solution in the massive space of possible combinations of replacements while preserving semantic consistency and language fluency. In this paper, we propose BERT-Attack, a high-quality and effective method to generate adversarial samples using pre-trained masked language models exemplified by BERT. We turn BERT against its fine-tuned models and other deep neural models in downstream tasks so that we can successfully mislead the target models to predict incorrectly. Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage, while the generated adversarial samples are fluent and semantically preserved. Also, the cost of calculation is low, thus possible for large-scale generations. The code is available at https://github.com/LinyangLee/BERT-Attack.

pdf bib
GenWiki: A Dataset of 1.3 Million Content-Sharing Text and Graphs for Unsupervised Graph-to-Text Generation
Zhijing Jin | Qipeng Guo | Xipeng Qiu | Zheng Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Data collection for the knowledge graph-to-text generation is expensive. As a result, research on unsupervised models has emerged as an active field recently. However, most unsupervised models have to use non-parallel versions of existing small supervised datasets, which largely constrain their potential. In this paper, we propose a large-scale, general-domain dataset, GenWiki. Our unsupervised dataset has 1.3M text and graph examples, respectively. With a human-annotated test set, we provide this new benchmark dataset for future research on unsupervised text generation from knowledge graphs.

pdf bib
CoLAKE: Contextualized Language and Knowledge Embedding
Tianxiang Sun | Yunfan Shao | Xipeng Qiu | Qipeng Guo | Yaru Hu | Xuanjing Huang | Zheng Zhang
Proceedings of the 28th International Conference on Computational Linguistics

With the emerging branch of incorporating factual knowledge into pre-trained language models such as BERT, most existing models consider shallow, static, and separately pre-trained entity embeddings, which limits the performance gains of these models. Few works explore the potential of deep contextualized knowledge representation when injecting knowledge. In this paper, we propose the Contextualized Language and Knowledge Embedding (CoLAKE), which jointly learns contextualized representation for both language and knowledge with the extended MLM objective. Instead of injecting only entity embeddings, CoLAKE extracts the knowledge context of an entity from large-scale knowledge bases. To handle the heterogeneity of knowledge context and language context, we integrate them in a unified data structure, word-knowledge graph (WK graph). CoLAKE is pre-trained on large-scale WK graphs with the modified Transformer encoder. We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks. Experimental results show that CoLAKE outperforms previous counterparts on most of the tasks. Besides, CoLAKE achieves surprisingly high performance on our synthetic task called word-knowledge graph completion, which shows the superiority of simultaneously contextualizing language and knowledge representation.

pdf bib
CycleGT: Unsupervised Graph-to-Text and Text-to-Graph Generation via Cycle Training
Qipeng Guo | Zhijing Jin | Xipeng Qiu | Weinan Zhang | David Wipf | Zheng Zhang
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)

Two important tasks at the intersection of knowledge graphs and natural language processing are graph-to-text (G2T) and text-tograph (T2G) conversion. Due to the difficulty and high cost of data collection, the supervised data available in the two fields are usually on the magnitude of tens of thousands, for example, 18K in the WebNLG 2017 dataset after preprocessing, which is far fewer than the millions of data for other tasks such as machine translation. Consequently, deep learning models for G2T and T2G suffer largely from scarce training data. We present CycleGT, an unsupervised training method that can bootstrap from fully non-parallel graph and text data, and iteratively back translate between the two forms. Experiments on WebNLG datasets show that our unsupervised model trained on the same number of data achieves performance on par with several fully supervised models. Further experiments on the non-parallel GenWiki dataset verify that our method performs the best among unsupervised baselines. This validates our framework as an effective approach to overcome the data scarcity problem in the fields of G2T and T2G.

pdf bib
𝒫2: A Plan-and-Pretrain Approach for Knowledge Graph-to-Text Generation
Qipeng Guo | Zhijing Jin | Ning Dai | Xipeng Qiu | Xiangyang Xue | David Wipf | Zheng Zhang
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)

Text verbalization of knowledge graphs is an important problem with wide application to natural language generation (NLG) systems. It is challenging because the generated text not only needs to be grammatically correct (fluency), but also has to contain the given structured knowledge input (relevance) and meet some other criteria. We develop a plan-and-pretrain approach, 𝒫2, which consists of a relational graph convolutional network (RGCN) planner and the pretrained sequence-tosequence (Seq2Seq) model T5. Specifically, the R-GCN planner first generates an order of the knowledge graph triplets, corresponding to the order that they will be mentioned in text, and then T5 produces the surface realization of the given plan. In the WebNLG+ 2020 Challenge, our submission ranked in 1st place on all automatic and human evaluation criteria of the English RDF-to-text generation task.

2019

pdf bib
Star-Transformer
Qipeng Guo | Xipeng Qiu | Pengfei Liu | Yunfan Shao | Xiangyang Xue | Zheng Zhang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Although Transformer has achieved great successes on many NLP tasks, its heavy structure with fully-connected attention connections leads to dependencies on large training data. In this paper, we present Star-Transformer, a lightweight alternative by careful sparsification. To reduce model complexity, we replace the fully-connected structure with a star-shaped topology, in which every two non-adjacent nodes are connected through a shared relay node. Thus, complexity is reduced from quadratic to linear, while preserving the capacity to capture both local composition and long-range dependency. The experiments on four tasks (22 datasets) show that Star-Transformer achieved significant improvements against the standard Transformer for the modestly sized datasets.