Qisheng Hu


2024

pdf bib
From Moments to Milestones: Incremental Timeline Summarization Leveraging Large Language Models
Qisheng Hu | Geonsik Moon | Hwee Tou Ng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Timeline summarization (TLS) is essential for distilling coherent narratives from a vast collection of texts, tracing the progression of events and topics over time. Prior research typically focuses on either event or topic timeline summarization, neglecting the potential synergy of these two forms. In this study, we bridge this gap by introducing a novel approach that leverages large language models (LLMs) for generating both event and topic timelines. Our approach diverges from conventional TLS by prioritizing event detection, leveraging LLMs as pseudo-oracles for incremental event clustering and the construction of timelines from a text stream. As a result, it produces a more interpretable pipeline. Empirical evaluation across four TLS benchmarks reveals that our approach outperforms the best prior published approaches, highlighting the potential of LLMs in timeline summarization for real-world applications.

pdf bib
InstructCoder: Instruction Tuning Large Language Models for Code Editing
Kaixin Li | Qisheng Hu | James Zhao | Hui Chen | Yuxi Xie | Tiedong Liu | Michael Shieh | Junxian He
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Code editing encompasses a variety of pragmatic tasks that developers deal with daily. Despite its relevance and practical usefulness, automatic code editing remains an underexplored area in the evolution of deep learning models, partly due to data scarcity. In this work, we explore the use of Large Language Models (LLMs) to edit code based on user instructions. Evaluated on a novel human-written execution-based benchmark dubbed EditEval, we found current models often struggle to fulfill the instructions. In light of this, we contribute InstructCoder, the first instruction-tuning dataset designed to adapt LLMs for general-purpose code editing, containing high-diversity code-editing tasks such as comment insertion, code optimization, and code refactoring. It consists of over 114,000 instruction-input-output triplets and covers multiple distinct code editing scenarios. The collection process starts with filtered commit data sourced from GitHub Python repositories as seeds. Subsequently, the dataset is systematically expanded through an iterative process, where both seed and generated tasks are used to prompt ChatGPT for more data. Our findings reveal that open-source LLMs fine-tuned on InstructCoder can significantly enhance the accuracy of code edits, exhibiting superior code-editing performance matching advanced proprietary LLMs. The datasets and the source code are publicly available.