Qiyue Gao


2023

pdf bib
DISCO: Distilling Counterfactuals with Large Language Models
Zeming Chen | Qiyue Gao | Antoine Bosselut | Ashish Sabharwal | Kyle Richardson
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Models trained with counterfactually augmented data learn representations of the causal structure of tasks, enabling robust generalization. However, high-quality counterfactual data is scarce for most tasks and not easily generated at scale. When crowdsourced, such data is typically limited in scale and diversity; when generated using supervised methods, it is computationally expensive to extend to new counterfactual dimensions. In this work, we introduce DISCO (DIStilled COunterfactual Data), a new method for automatically generating high-quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters these generations to distill high-quality counterfactual data. While task-agnostic, we apply our pipeline to the task of natural language inference (NLI) and find that on challenging evaluations such as the NLI stress test, comparatively smaller student models trained with DISCO generated counterfactuals are more robust (6% absolute) and generalize better across distributions (2%) compared to models trained without data augmentation. Furthermore, DISCO augmented models are 10% more consistent between counterfactual pairs on three evaluation sets, demonstrating that DISCO augmentation enables models to more reliably learn causal representations. Our repository are available at: https://github.com/eric11eca/disco

2022

pdf bib
Curriculum: A Broad-Coverage Benchmark for Linguistic Phenomena in Natural Language Understanding
Zeming Chen | Qiyue Gao
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In the age of large transformer language models, linguistic evaluation play an important role in diagnosing models’ abilities and limitations on natural language understanding. However, current evaluation methods show some significant shortcomings. In particular, they do not provide insight into how well a language model captures distinct linguistic skills essential for language understanding and reasoning. Thus they fail to effectively map out the aspects of language understanding that remain challenging to existing models, which makes it hard to discover potential limitations in models and datasets. In this paper, we introduce Curriculum as a new format of NLI benchmark for evaluation of broad-coverage linguistic phenomena. Curriculum contains a collection of datasets that covers 36 types of major linguistic phenomena and an evaluation procedure for diagnosing how well a language model captures reasoning skills for distinct types of linguistic phenomena. We show that this linguistic-phenomena-driven benchmark can serve as an effective tool for diagnosing model behavior and verifying model learning quality. In addition, our experiments provide insight into the limitation of existing benchmark datasets and state-of-the-art models that may encourage future research on re-designing datasets, model architectures, and learning objectives.

2021

pdf bib
Monotonicity Marking from Universal Dependency Trees
Zeming Chen | Qiyue Gao
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

Dependency parsing is a tool widely used in the field of Natural language processing and computational linguistics. However, there is hardly any work that connects dependency parsing to monotonicity, which is an essential part of logic and linguistic semantics. In this paper, we present a system that automatically annotates monotonicity information based on Universal Dependency parse trees. Our system utilizes surface-level monotonicity facts about quantifiers, lexical items, and token-level polarity information. We compared our system’s performance with existing systems in the literature, including NatLog and ccg2mono, on a small evaluation dataset. Results show that our system outperforms NatLog and ccg2mono.

pdf bib
NeuralLog: Natural Language Inference with Joint Neural and Logical Reasoning
Zeming Chen | Qiyue Gao | Lawrence S. Moss
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics

Deep learning (DL) based language models achieve high performance on various benchmarks for Natural Language Inference (NLI). And at this time, symbolic approaches to NLI are receiving less attention. Both approaches (symbolic and DL) have their advantages and weaknesses. However, currently, no method combines them in a system to solve the task of NLI. To merge symbolic and deep learning methods, we propose an inference framework called NeuralLog, which utilizes both a monotonicity-based logical inference engine and a neural network language model for phrase alignment. Our framework models the NLI task as a classic search problem and uses the beam search algorithm to search for optimal inference paths. Experiments show that our joint logic and neural inference system improves accuracy on the NLI task and can achieve state-of-art accuracy on the SICK and MED datasets.