Quan Liu


2022

pdf bib
USTC-NELSLIP at SemEval-2022 Task 11: Gazetteer-Adapted Integration Network for Multilingual Complex Named Entity Recognition
Beiduo Chen | Jun-Yu Ma | Jiajun Qi | Wu Guo | Zhen-Hua Ling | Quan Liu
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes the system developed by the USTC-NELSLIP team for SemEval-2022 Task 11 Multilingual Complex Named Entity Recognition (MultiCoNER). We propose a gazetteer-adapted integration network (GAIN) to improve the performance of language models for recognizing complex named entities. The method first adapts the representations of gazetteer networks to those of language models by minimizing the KL divergence between them. After adaptation, these two networks are then integrated for backend supervised named entity recognition (NER) training. The proposed method is applied to several state-of-the-art Transformer-based NER models with a gazetteer built from Wikidata, and shows great generalization ability across them. The final predictions are derived from an ensemble of these trained models. Experimental results and detailed analysis verify the effectiveness of the proposed method. The official results show that our system ranked 1st on three tracks (Chinese, Code-mixed and Bangla) and 2nd on the other ten tracks in this task.

pdf bib
Conversation- and Tree-Structure Losses for Dialogue Disentanglement
Tianda Li | Jia-Chen Gu | Zhen-Hua Ling | Quan Liu
Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

When multiple conversations occur simultaneously, a listener must decide which conversation each utterance is part of in order to interpret and respond to it appropriately. This task is referred as dialogue disentanglement. A significant drawback of previous studies on disentanglement lies in that they only focus on pair-wise relationships between utterances while neglecting the conversation structure which is important for conversation structure modeling. In this paper, we propose a hierarchical model, named Dialogue BERT (DIALBERT), which integrates the local and global semantics in the context range by using BERT to encode each message-pair and using BiLSTM to aggregate the chronological context information into the output of BERT. In order to integrate the conversation structure information into the model, two types of loss of conversation-structure loss and tree-structure loss are designed. In this way, our model can implicitly learn and leverage the conversation structures without being restricted to the lack of explicit access to such structures during the inference stage. Experimental results on two large datasets show that our method outperforms previous methods by substantial margins, achieving great performance on dialogue disentanglement.

2021

pdf bib
SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning
Boyuan Zheng | Xiaoyu Yang | Yu-Ping Ruan | Zhenhua Ling | Quan Liu | Si Wei | Xiaodan Zhu
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts.Given a passage and the corresponding question, a participating system is expected to choose the correct answer from five candidates of abstract concepts in cloze-style machine reading comprehension tasks. Based on two typical definitions of abstractness, i.e., the imperceptibility and nonspecificity, our task provides three subtasks to evaluate models’ ability in comprehending the two types of abstract meaning and the models’ generalizability. Specifically, Subtask 1 aims to evaluate how well a participating system models concepts that cannot be directly perceived in the physical world. Subtask 2 focuses on models’ ability in comprehending nonspecific concepts located high in a hypernym hierarchy given the context of a passage. Subtask 3 aims to provide some insights into models’ generalizability over the two types of abstractness. During the SemEval-2021 official evaluation period, we received 23 submissions to Subtask 1 and 28 to Subtask 2. The participating teams additionally made 29 submissions to Subtask 3. The leaderboard and competition website can be found at https://competitions.codalab.org/competitions/26153. The data and baseline code are available at https://github.com/boyuanzheng010/SemEval2021-Reading-Comprehension-of-Abstract-Meaning.

pdf bib
A Pretraining Numerical Reasoning Model for Ordinal Constrained Question Answering on Knowledge Base
Yu Feng | Jing Zhang | Gaole He | Wayne Xin Zhao | Lemao Liu | Quan Liu | Cuiping Li | Hong Chen
Findings of the Association for Computational Linguistics: EMNLP 2021

Knowledge Base Question Answering (KBQA) is to answer natural language questions posed over knowledge bases (KBs). This paper targets at empowering the IR-based KBQA models with the ability of numerical reasoning for answering ordinal constrained questions. A major challenge is the lack of explicit annotations about numerical properties. To address this challenge, we propose a pretraining numerical reasoning model consisting of NumGNN and NumTransformer, guided by explicit self-supervision signals. The two modules are pretrained to encode the magnitude and ordinal properties of numbers respectively and can serve as model-agnostic plugins for any IR-based KBQA model to enhance its numerical reasoning ability. Extensive experiments on two KBQA benchmarks verify the effectiveness of our method to enhance the numerical reasoning ability for IR-based KBQA models.

pdf bib
Detecting Speaker Personas from Conversational Texts
Jia-Chen Gu | Zhenhua Ling | Yu Wu | Quan Liu | Zhigang Chen | Xiaodan Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Personas are useful for dialogue response prediction. However, the personas used in current studies are pre-defined and hard to obtain before a conversation. To tackle this issue, we study a new task, named Speaker Persona Detection (SPD), which aims to detect speaker personas based on the plain conversational text. In this task, a best-matched persona is searched out from candidates given the conversational text. This is a many-to-many semantic matching task because both contexts and personas in SPD are composed of multiple sentences. The long-term dependency and the dynamic redundancy among these sentences increase the difficulty of this task. We build a dataset for SPD, dubbed as Persona Match on Persona-Chat (PMPC). Furthermore, we evaluate several baseline models and propose utterance-to-profile (U2P) matching networks for this task. The U2P models operate at a fine granularity which treat both contexts and personas as sets of multiple sequences. Then, each sequence pair is scored and an interpretable overall score is obtained for a context-persona pair through aggregation. Evaluation results show that the U2P models outperform their baseline counterparts significantly.

2020

pdf bib
Program Enhanced Fact Verification with Verbalization and Graph Attention Network
Xiaoyu Yang | Feng Nie | Yufei Feng | Quan Liu | Zhigang Chen | Xiaodan Zhu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Performing fact verification based on structured data is important for many real-life applications and is a challenging research problem, particularly when it involves both symbolic operations and informal inference based on language understanding. In this paper, we present a Program-enhanced Verbalization and Graph Attention Network (ProgVGAT) to integrate programs and execution into textual inference models. Specifically, a verbalization with program execution model is proposed to accumulate evidences that are embedded in operations over the tables. Built on that, we construct the graph attention verification networks, which are designed to fuse different sources of evidences from verbalized program execution, program structures, and the original statements and tables, to make the final verification decision. To support the above framework, we propose a program selection module optimized with a new training strategy based on margin loss, to produce more accurate programs, which is shown to be effective in enhancing the final verification results. Experimental results show that the proposed framework achieves the new state-of-the-art performance, a 74.4% accuracy, on the benchmark dataset TABFACT.

pdf bib
Exploring End-to-End Differentiable Natural Logic Modeling
Yufei Feng | Zi’ou Zheng | Quan Liu | Michael Greenspan | Xiaodan Zhu
Proceedings of the 28th International Conference on Computational Linguistics

We explore end-to-end trained differentiable models that integrate natural logic with neural networks, aiming to keep the backbone of natural language reasoning based on the natural logic formalism while introducing subsymbolic vector representations and neural components. The proposed model adapts module networks to model natural logic operations, which is enhanced with a memory component to model contextual information. Experiments show that the proposed framework can effectively model monotonicity-based reasoning, compared to the baseline neural network models without built-in inductive bias for monotonicity-based reasoning. Our proposed model shows to be robust when transferred from upward to downward inference. We perform further analyses on the performance of the proposed model on aggregation, showing the effectiveness of the proposed subcomponents on helping achieve better intermediate aggregation performance.

pdf bib
Filtering before Iteratively Referring for Knowledge-Grounded Response Selection in Retrieval-Based Chatbots
Jia-Chen Gu | Zhenhua Ling | Quan Liu | Zhigang Chen | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2020

The challenges of building knowledge-grounded retrieval-based chatbots lie in how to ground a conversation on its background knowledge and how to match response candidates with both context and knowledge simultaneously. This paper proposes a method named Filtering before Iteratively REferring (FIRE) for this task. In this method, a context filter and a knowledge filter are first built, which derive knowledge-aware context representations and context-aware knowledge representations respectively by global and bidirectional attention. Besides, the entries irrelevant to the conversation are discarded by the knowledge filter. After that, iteratively referring is performed between context and response representations as well as between knowledge and response representations, in order to collect deep matching features for scoring response candidates. Experimental results show that FIRE outperforms previous methods by margins larger than 2.8% and 4.1% on the PERSONA-CHAT dataset with original and revised personas respectively, and margins larger than 3.1% on the CMU_DoG dataset in terms of top-1 accuracy. We also show that FIRE is more interpretable by visualizing the knowledge grounding process.

2019

pdf bib
Dually Interactive Matching Network for Personalized Response Selection in Retrieval-Based Chatbots
Jia-Chen Gu | Zhen-Hua Ling | Xiaodan Zhu | Quan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper proposes a dually interactive matching network (DIM) for presenting the personalities of dialogue agents in retrieval-based chatbots. This model develops from the interactive matching network (IMN) which models the matching degree between a context composed of multiple utterances and a response candidate. Compared with previous persona fusion approach which enhances the representation of a context by calculating its similarity with a given persona, the DIM model adopts a dual matching architecture, which performs interactive matching between responses and contexts and between responses and personas respectively for ranking response candidates. Experimental results on PERSONA-CHAT dataset show that the DIM model outperforms its baseline model, i.e., IMN with persona fusion, by a margin of 14.5% and outperforms the present state-of-the-art model by a margin of 27.7% in terms of top-1 accuracy hits@1.

2018

pdf bib
The USTC-NEL Speech Translation system at IWSLT 2018
Dan Liu | Junhua Liu | Wu Guo | Shifu Xiong | Zhiqiang Ma | Rui Song | Chongliang Wu | Quan Liu
Proceedings of the 15th International Conference on Spoken Language Translation

This paper describes the USTC-NEL (short for ”National Engineering Laboratory for Speech and Language Information Processing University of science and technology of china”) system to the speech translation task of the IWSLT Evaluation 2018. The system is a conventional pipeline system which contains 3 modules: speech recognition, post-processing and machine translation. We train a group of hybrid-HMM models for our speech recognition, and for machine translation we train transformer based neural machine translation models with speech recognition output style text as input. Experiments conducted on the IWSLT 2018 task indicate that, compared to baseline system from KIT, our system achieved 14.9 BLEU improvement.

2017

pdf bib
Word Embeddings based on Fixed-Size Ordinally Forgetting Encoding
Joseph Sanu | Mingbin Xu | Hui Jiang | Quan Liu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose to learn word embeddings based on the recent fixed-size ordinally forgetting encoding (FOFE) method, which can almost uniquely encode any variable-length sequence into a fixed-size representation. We use FOFE to fully encode the left and right context of each word in a corpus to construct a novel word-context matrix, which is further weighted and factorized using truncated SVD to generate low-dimension word embedding vectors. We evaluate this alternate method in encoding word-context statistics and show the new FOFE method has a notable effect on the resulting word embeddings. Experimental results on several popular word similarity tasks have demonstrated that the proposed method outperforms other SVD models that use canonical count based techniques to generate word context matrices.

2016

pdf bib
Intra-Topic Variability Normalization based on Linear Projection for Topic Classification
Quan Liu | Wu Guo | Zhen-Hua Ling | Hui Jiang | Yu Hu
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2015

pdf bib
Learning Semantic Word Embeddings based on Ordinal Knowledge Constraints
Quan Liu | Hui Jiang | Si Wei | Zhen-Hua Ling | Yu Hu
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)