Quanzeng You
2024
InfiMM: Advancing Multimodal Understanding with an Open-Sourced Visual Language Model
Haogeng Liu
|
Quanzeng You
|
Yiqi Wang
|
Xiaotian Han
|
Bohan Zhai
|
Yongfei Liu
|
Wentao Chen
|
Yiren Jian
|
Yunzhe Tao
|
Jianbo Yuan
|
Ran He
|
Hongxia Yang
Findings of the Association for Computational Linguistics: ACL 2024
In this work, we present InfiMM, an advanced Multimodal Large Language Model that adapts to intricate vision-language tasks. InfiMM, inspired by the Flamingo architecture, distinguishes itself through the utilization of large-scale training data, comprehensive training strategies, and diverse large language models. This approach ensures the preservation of Flamingo’s foundational strengths while simultaneously introducing augmented capabilities. Empirical evaluations across a variety of benchmarks underscore InfiMM’s remarkable capability in multimodal understanding. The code can be found at: https://anonymous.4open.science/r/infimm-zephyr-F60C/.
2021
Writing by Memorizing: Hierarchical Retrieval-based Medical Report Generation
Xingyi Yang
|
Muchao Ye
|
Quanzeng You
|
Fenglong Ma
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Medical report generation is one of the most challenging tasks in medical image analysis. Although existing approaches have achieved promising results, they either require a predefined template database in order to retrieve sentences or ignore the hierarchical nature of medical report generation. To address these issues, we propose MedWriter that incorporates a novel hierarchical retrieval mechanism to automatically extract both report and sentence-level templates for clinically accurate report generation. MedWriter first employs the Visual-Language Retrieval (VLR) module to retrieve the most relevant reports for the given images. To guarantee the logical coherence between generated sentences, the Language-Language Retrieval (LLR) module is introduced to retrieve relevant sentences based on the previous generated description. At last, a language decoder fuses image features and features from retrieved reports and sentences to generate meaningful medical reports. We verified the effectiveness of our model by automatic evaluation and human evaluation on two datasets, i.e., Open-I and MIMIC-CXR.
Search
Co-authors
- Xingyi Yang 1
- Muchao Ye 1
- Fenglong Ma 1
- Haogeng Liu 1
- Yiqi Wang 1
- show all...