R. McCoy
2024
ModeLing: A Novel Dataset for Testing Linguistic Reasoning in Language Models
Nathan Chi
|
Teodor Malchev
|
Riley Kong
|
Ryan Chi
|
Lucas Huang
|
Ethan Chi
|
R. McCoy
|
Dragomir Radev
Proceedings of the 6th Workshop on Research in Computational Linguistic Typology and Multilingual NLP
Large language models (LLMs) perform well on (at least) some evaluations of both few-shot multilingual adaptation and reasoning. However, evaluating the intersection of these two skills—multilingual few-shot reasoning—is difficult: even relatively low-resource languages can be found in large training corpora, raising the concern that when we intend to evaluate a model’s ability to generalize to a new language, that language may have in fact been present during the model’s training. If such language contamination has occurred, apparent cases of few-shot reasoning could actually be due to memorization. Towards understanding the capability of models to perform multilingual few-shot reasoning, we propose modeLing, a benchmark of Rosetta stone puzzles. This type of puzzle, originating from competitions called Linguistics Olympiads, contain a small number of sentences in a target language not previously known to the solver. Each sentence is translated to the solver’s language such that the provided sentence pairs uniquely specify a single most reasonable underlying set of rules; solving requires applying these rules to translate new expressions (Figure 1). modeLing languages are chosen to be extremely low-resource such that the risk of training data contamination is low, and unlike prior datasets, it consists entirely of problems written specifically for this work, as a further measure against data leakage. Empirically, we find evidence that popular LLMs do not have data leakage on our benchmark.