We present COPAL-ID, a novel, public Indonesian language common sense reasoning dataset. Unlike the previous Indonesian COPA dataset (XCOPA-ID), COPAL-ID incorporates Indonesian local and cultural nuances, and therefore, provides a more natural portrayal of day-to-day causal reasoning within the Indonesian cultural sphere. Professionally written by natives from scratch, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID. In addition, we present COPALID in both standard Indonesian and in Jakartan Indonesian–a dialect commonly used in daily conversation. COPAL-ID poses a greater challenge for existing open-sourced and closedstate-of-the-art multilingual language models, yet is trivially easy for humans. Our findings suggest that general multilingual models struggle to perform well, achieving 66.91% accuracy on COPAL-ID. South-East Asian-specific models achieve slightly better performance of 73.88% accuracy. Yet, this number still falls short of near-perfect human performance. This shows that these language models are still way behind in comprehending the local nuances of Indonesian.
This evidence-based position paper critiques current research practices within the language model pre-training literature. Despite rapid recent progress afforded by increasingly better pre-trained language models (PLMs), current PLM research practices often conflate different possible sources of model improvement, without conducting proper ablation studies and principled comparisons between different models under comparable conditions. These practices (i) leave us ill-equipped to understand which pre-training approaches should be used under what circumstances; (ii) impede reproducibility and credit assignment; and (iii) render it difficult to understand: “How exactly does each factor contribute to the progress that we have today?” We provide a case in point by revisiting the success of BERT over its baselines, ELMo and GPT-1, and demonstrate how — under comparable conditions where the baselines are tuned to a similar extent — these baselines (and even-simpler variants thereof) can, in fact, achieve competitive or better performance than BERT. These findings demonstrate how disentangling different factors of model improvements can lead to valuable new insights. We conclude with recommendations for how to encourage and incentivize this line of work, and accelerate progress towards a better and more systematic understanding of what factors drive the progress of our foundation models today.
Natural language processing (NLP) has a significant impact on society via technologies such as machine translation and search engines. Despite its success, NLP technology is only widely available for high-resource languages such as English and Chinese, while it remains inaccessible to many languages due to the unavailability of data resources and benchmarks. In this work, we focus on developing resources for languages in Indonesia. Despite being the second most linguistically diverse country, most languages in Indonesia are categorized as endangered and some are even extinct. We develop the first-ever parallel resource for 10 low-resource languages in Indonesia. Our resource includes sentiment and machine translation datasets, and bilingual lexicons. We provide extensive analyses and describe challenges for creating such resources. We hope this work can spark NLP research on Indonesian and other underrepresented languages.
NLP research is impeded by a lack of resources and awareness of the challenges presented by underrepresented languages and dialects. Focusing on the languages spoken in Indonesia, the second most linguistically diverse and the fourth most populous nation of the world, we provide an overview of the current state of NLP research for Indonesia’s 700+ languages. We highlight challenges in Indonesian NLP and how these affect the performance of current NLP systems. Finally, we provide general recommendations to help develop NLP technology not only for languages of Indonesia but also other underrepresented languages.
This paper describes our team’s submission for the Social Media Mining for Health (SMM4H) 2021 shared task. We participated in three subtasks: Classifying adverse drug effect, COVID-19 self-report, and COVID-19 symptoms. Our system is based on BERT model pre-trained on the domain-specific text. In addition, we perform data cleaning and augmentation, as well as hyperparameter optimization and model ensemble to further boost the BERT performance. We achieved the first rank in both classifying adverse drug effects and COVID-19 self-report tasks.
In the context of Machine Translation (MT) from-and-to English, Bahasa Indonesia has been considered a low-resource language, and therefore applying Neural Machine Translation (NMT) which typically requires large training dataset proves to be problematic. In this paper, we show otherwise by collecting large, publicly-available datasets from the Web, which we split into several domains: news, religion, general, and conversation, to train and benchmark some variants of transformer-based NMT models across the domains. We show using BLEU that our models perform well across them , outperform the baseline Statistical Machine Translation (SMT) models, and perform comparably with Google Translate. Our datasets (with the standard split for training, validation, and testing), code, and models are available on https://github.com/gunnxx/indonesian-mt-data