Raghav Gupta


2023

pdf bib
Conversational Recommendation as Retrieval: A Simple, Strong Baseline
Raghav Gupta | Renat Aksitov | Samrat Phatale | Simral Chaudhary | Harrison Lee | Abhinav Rastogi
Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)

Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation. However, most CRS approaches do not effectively utilize the signal provided by these conversations. They rely heavily on explicit external knowledge e.g., knowledge graphs to augment the models’ understanding of the items and attributes, which is quite hard to scale. To alleviate this, we propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task, where we represent conversations as queries and items as documents to be retrieved. We expand the document representation used for retrieval with conversations from the training set. With a simple BM25-based retriever, we show that our task formulation compares favorably with much more complex baselines using complex external knowledge on a popular CRS benchmark. We demonstrate further improvements using user-centric modeling and data augmentation to counter the cold start problem for CRSs.

pdf bib
AnyTOD: A Programmable Task-Oriented Dialog System
Jeffrey Zhao | Yuan Cao | Raghav Gupta | Harrison Lee | Abhinav Rastogi | Mingqiu Wang | Hagen Soltau | Izhak Shafran | Yonghui Wu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We propose AnyTOD, an end-to-end, zero-shot task-oriented dialog (TOD) system capable of zero-shot adaptation onto unseen tasks or domains. We view TOD as a program executed by a language model (LM), where program logic and ontology is provided by a designer as a schema. To enable generalization to unseen schemas and programs without prior training, AnyTOD adopts a neuro-symbolic approach. A neural LM keeps track of events that occur during a conversation, and a symbolic program implementing dialog policy is executed to recommend actions AnyTOD should take. This approach drastically reduces data annotation and model training requirements, addressing the enduring challenge of rapidly adapting a TOD system to unseen tasks and domains. We demonstrate state-of-the-art results on STAR, ABCD and SGD benchmarks. We also demonstrate strong zero-shot transfer ability in low-resource settings, such as zero-shot transfer onto MultiWOZ. In addition, we release STARv2, an updated version of the STAR dataset with richer annotations, for benchmarking zero-shot task transfer for end-to-end TOD models.

2022

pdf bib
Show, Don’t Tell: Demonstrations Outperform Descriptions for Schema-Guided Task-Oriented Dialogue
Raghav Gupta | Harrison Lee | Jeffrey Zhao | Yuan Cao | Abhinav Rastogi | Yonghui Wu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don’t Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark.

2021

pdf bib
Extremely Small BERT Models from Mixed-Vocabulary Training
Sanqiang Zhao | Raghav Gupta | Yang Song | Denny Zhou
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Pretrained language models like BERT have achieved good results on NLP tasks, but are impractical on resource-limited devices due to memory footprint. A large fraction of this footprint comes from the input embeddings with large input vocabulary and embedding dimensions. Existing knowledge distillation methods used for model compression cannot be directly applied to train student models with reduced vocabulary sizes. To this end, we propose a distillation method to align the teacher and student embeddings via mixed-vocabulary training. Our method compresses BERT-LARGE to a task-agnostic model with smaller vocabulary and hidden dimensions, which is an order of magnitude smaller than other distilled BERT models and offers a better size-accuracy trade-off on language understanding benchmarks as well as a practical dialogue task.

2020

pdf bib
MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines
Xiaoxue Zang | Abhinav Rastogi | Srinivas Sunkara | Raghav Gupta | Jianguo Zhang | Jindong Chen
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI

MultiWOZ is a well-known task-oriented dialogue dataset containing over 10,000 annotated dialogues spanning 8 domains. It is extensively used as a benchmark for dialogue state tracking. However, recent works have reported presence of substantial noise in the dialogue state annotations. MultiWOZ 2.1 identified and fixed many of these erroneous annotations and user utterances, resulting in an improved version of this dataset. This work introduces MultiWOZ 2.2, which is a yet another improved version of this dataset. Firstly, we identify and fix dialogue state annotation errors across 17.3% of the utterances on top of MultiWOZ 2.1. Secondly, we redefine the ontology by disallowing vocabularies of slots with a large number of possible values (e.g., restaurant name, time of booking). In addition, we introduce slot span annotations for these slots to standardize them across recent models, which previously used custom string matching heuristics to generate them. We also benchmark a few state of the art dialogue state tracking models on the corrected dataset to facilitate comparison for future work. In the end, we discuss best practices for dialogue data collection that can help avoid annotation errors.

2019

pdf bib
Robust Zero-Shot Cross-Domain Slot Filling with Example Values
Darsh Shah | Raghav Gupta | Amir Fayazi | Dilek Hakkani-Tur
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Task-oriented dialog systems increasingly rely on deep learning-based slot filling models, usually needing extensive labeled training data for target domains. Often, however, little to no target domain training data may be available, or the training and target domain schemas may be misaligned, as is common for web forms on similar websites. Prior zero-shot slot filling models use slot descriptions to learn concepts, but are not robust to misaligned schemas. We propose utilizing both the slot description and a small number of examples of slot values, which may be easily available, to learn semantic representations of slots which are transferable across domains and robust to misaligned schemas. Our approach outperforms state-of-the-art models on two multi-domain datasets, especially in the low-data setting.

2018

pdf bib
Multi-task Learning for Joint Language Understanding and Dialogue State Tracking
Abhinav Rastogi | Raghav Gupta | Dilek Hakkani-Tur
Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue

This paper presents a novel approach for multi-task learning of language understanding (LU) and dialogue state tracking (DST) in task-oriented dialogue systems. Multi-task training enables the sharing of the neural network layers responsible for encoding the user utterance for both LU and DST and improves performance while reducing the number of network parameters. In our proposed framework, DST operates on a set of candidate values for each slot that has been mentioned so far. These candidate sets are generated using LU slot annotations for the current user utterance, dialogue acts corresponding to the preceding system utterance and the dialogue state estimated for the previous turn, enabling DST to handle slots with a large or unbounded set of possible values and deal with slot values not seen during training. Furthermore, to bridge the gap between training and inference, we investigate the use of scheduled sampling on LU output for the current user utterance as well as the DST output for the preceding turn.

2016

pdf bib
A Fast Unified Model for Parsing and Sentence Understanding
Samuel R. Bowman | Jon Gauthier | Abhinav Rastogi | Raghav Gupta | Christopher D. Manning | Christopher Potts
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)