Rahul Aditya


2024

pdf bib
Getting Serious about Humor: Crafting Humor Datasets with Unfunny Large Language Models
Zachary Horvitz | Jingru Chen | Rahul Aditya | Harshvardhan Srivastava | Robert West | Zhou Yu | Kathleen McKeown
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Humor is a fundamental facet of human cognition and interaction. Yet, despite recent advances in natural language processing, humor detection remains a challenging task that is complicated by the scarcity of datasets that pair humorous texts with similar non-humorous counterparts. We investigate whether large language models (LLMs) can generate synthetic data for humor detection via editing texts. We benchmark LLMs on an existing human dataset and show that current LLMs display an impressive ability to “unfun” jokes, as judged by humans and as measured on the downstream task of humor detection. We extend our approach to a code-mixed English-Hindi humor dataset where we find that GPT-4’s synthetic data is highly rated by bilingual annotators and provides challenging adversarial examples for humor classifiers.

pdf bib
AI-Tutor: Interactive Learning of Ancient Knowledge from Low-Resource Languages
Siddhartha Dalal | Rahul Aditya | Vethavikashini Chithrra Raghuram | Prahlad Koratamaddi
Proceedings of the Eleventh Workshop on Asian Translation (WAT 2024)

Many low-resource languages, such as Prakrit, present significant linguistic complexities and have limited modern-day resources. These languages often have multiple derivatives; for example, Prakrit, a language in use by masses around 2500 years ago for 500 years, includes Pali and Gandhari, which encompass a vast body of Buddhist literature, as well as Ardhamagadhi, rich in Jain literature. Despite these challenges, these languages are invaluable for their historical, religious, and cultural insights needed by non-language experts and others.To explore and understand the deep knowledge within these ancient texts for non-language experts, we propose a novel approach: translating multiple dialects of the parent language into a contemporary language and then enabling them to interact with the system in their native language, including English, Hindi, French and German, through a question-and-answer interface built on Large Language Models. We demonstrate the effectiveness of this novel AI-Tutor system by focusing on Ardhamagadhi and Pali.