Rahul Ghosh


2022

pdf bib
Phonetic, Semantic, and Articulatory Features in Assamese-Bengali Cognate Detection
Abhijnan Nath | Rahul Ghosh | Nikhil Krishnaswamy
Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects

In this paper, we propose a method to detect if words in two similar languages, Assamese and Bengali, are cognates. We mix phonetic, semantic, and articulatory features and use the cognate detection task to analyze the relative informational contribution of each type of feature to distinguish words in the two similar languages. In addition, since support for low-resourced languages like Assamese can be weak or nonexistent in some multilingual language models, we create a monolingual Assamese Transformer model and explore augmenting multilingual models with monolingual models using affine transformation techniques between vector spaces.

2020

pdf bib
Model-agnostic Methods for Text Classification with Inherent Noise
Kshitij Tayal | Rahul Ghosh | Vipin Kumar
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track

Text classification is a fundamental problem, and recently, deep neural networks (DNN) have shown promising results in many natural language tasks. However, their human-level performance relies on high-quality annotations, which are time-consuming and expensive to collect. As we move towards large inexpensive datasets, the inherent label noise degrades the generalization of DNN. While most machine learning literature focuses on building complex networks to handle noise, in this work, we evaluate model-agnostic methods to handle inherent noise in large scale text classification that can be easily incorporated into existing machine learning workflows with minimal interruption. Specifically, we conduct a point-by-point comparative study between several noise-robust methods on three datasets encompassing three popular classification models. To our knowledge, this is the first time such a comprehensive study in text classification encircling popular models and model-agnostic loss methods has been conducted. In this study, we describe our learning and demonstrate the application of our approach, which outperformed baselines by up to 10 % in classification accuracy while requiring no network modifications.