Rajendra Pamula


2022

pdf bib
IIT Dhanbad @LT-EDI-ACL2022- Hope Speech Detection for Equality, Diversity, and Inclusion
Vishesh Gupta | Ritesh Kumar | Rajendra Pamula
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

Hope is considered significant for the wellbeing,recuperation and restoration of humanlife by health professionals. Hope speech reflectsthe belief that one can discover pathwaysto their desired objectives and become rousedto utilise those pathways. Hope speech offerssupport, reassurance, suggestions, inspirationand insight. Hate speech is a prevalent practicethat society has to struggle with everyday. The freedom of speech and ease of anonymitygranted by social media has also resulted inincitement to hatred. In this paper, we workto identify and promote positive and supportivecontent on these platforms. We work withseveral machine learning models to classify socialmedia comments as hope speech or nonhopespeech in English. This paper portraysour work for the Shared Task on Hope SpeechDetection for Equality, Diversity, and Inclusionat LT-EDI-ACL 2022.

pdf bib
IIT DHANBAD CODECHAMPS at SemEval-2022 Task 5: MAMI - Multimedia Automatic Misogyny Identification
Shubham Barnwal | Ritesh Kumar | Rajendra Pamula
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

With the growth of the internet, the use of social media based on images has drastically increased like Twitter, Instagram, etc. In these social media, women have a very high contribution as of 75% women use social media multiple times compared to men which is only 65% of men uses social media multiple times a day. However, with this much contribution, it also increases systematic inequality and discrimination offline is replicated in online spaces in the form of MEMEs. A meme is essentially an image characterized by pictorial content with an overlaying text a posteriori introduced by humans, with the main goal of being funny and/or ironic. Although most of them are created with the intent of making funny jokes, in a short time people started to use them as a form of hate and prejudice against women, landing to sexist and aggressive messages in online environments that subsequently amplify the sexual stereotyping and gender inequality of the offline world. This leads to the need for automatic detection of Misogyny MEMEs. Specifically, I described the model submitted for the shared task on Multimedia Automatic Misogyny Identification (MAMI) and my team name is IIT DHANBAD CODECHAMPS.

2019

pdf bib
bhanodaig at SemEval-2019 Task 6: Categorizing Offensive Language in social media
Ritesh Kumar | Guggilla Bhanodai | Rajendra Pamula | Maheswara Reddy Chennuru
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes the work that our team bhanodaig did at Indian Institute of Technology (ISM) towards OffensEval i.e. identifying and categorizing offensive language in social media. Out of three sub-tasks, we have participated in sub-task B: automatic categorization of offensive types. We perform the task of categorizing offensive language, whether the tweet is targeted insult or untargeted. We use Linear Support Vector Machine for classification. The official ranking metric is macro-averaged F1. Our system gets the score 0.5282 with accuracy 0.8792. However, as new entrant to the field, our scores are encouraging enough to work for better results in future.

2018

pdf bib
TRAC-1 Shared Task on Aggression Identification: IIT(ISM)@COLING’18
Ritesh Kumar | Guggilla Bhanodai | Rajendra Pamula | Maheshwar Reddy Chennuru
Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)

This paper describes the work that our team bhanodaig did at Indian Institute of Technology (ISM) towards TRAC-1 Shared Task on Aggression Identification in Social Media for COLING 2018. In this paper we label aggression identification into three categories: Overtly Aggressive, Covertly Aggressive and Non-aggressive. We train a model to differentiate between these categories and then analyze the results in order to better understand how we can distinguish between them. We participated in two different tasks named as English (Facebook) task and English (Social Media) task. For English (Facebook) task System 05 was our best run (i.e. 0.3572) above the Random Baseline (i.e. 0.3535). For English (Social Media) task our system 02 got the value (i.e. 0.1960) below the Random Bseline (i.e. 0.3477). For all of our runs we used Long Short-Term Memory model. Overall, our performance is not satisfactory. However, as new entrant to the field, our scores are encouraging enough to work for better results in future.